Human immunodeficiency virus type 1 Rev is required in vivo for binding of poly(A)-binding protein to Rev-dependent RNAs. 1994

L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425-2230.

In the absence of Rev or the Rev-responsive element, the Rev-dependent human immunodeficiency virus type 1 (HIV-1) RNAs do not behave as mRNAs; rather, they exhibit nuclear defects in splicing and/or nuclear export and cytoplasmic defects in stability and translation. A translational initiation factor, eIF-5A, has recently been shown to bind specifically to the Rev activation domain. As the binding of poly(A)-binding protein 1 (PAB1) to the poly(A) tail of mRNAs is involved in both the stability and translation of cytoplasmic mRNAs, we investigated whether Rev might influence the association of PAB1 with cytoplasmic HIV-1 RNAs. Antibodies were generated against PAB1. We used these antibodies in an immunoprecipitation assay to detect specific binding of PAB1 to cytoplasmic mRNAs. We found that in the presence of Rev, PAB1 was associated with Rev-dependent and Rev-independent RNAs in the cytoplasm of transfected cells. However, in the absence of functional Rev, we found little or no PAB1 associated with Rev-dependent RNAs. These RNAs were capable of binding PAB1 in vitro. These results demonstrate that HIV-1 RNAs are defective in PAB1 association in the absence of Rev.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
May 2009, The Journal of general virology,
L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
September 1992, Journal of virology,
L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
June 1995, The Journal of biological chemistry,
L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
October 2002, Journal of virology,
L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
October 2009, Virology,
L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
January 1992, Proceedings of the National Academy of Sciences of the United States of America,
L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
June 1994, Journal of virology,
L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
November 1989, DNA (Mary Ann Liebert, Inc.),
L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
January 1996, Journal of virology,
L H Campbell, and K T Borg, and J K Haines, and R T Moon, and D R Schoenberg, and S J Arrigo
August 1999, The Journal of general virology,
Copied contents to your clipboard!