Effects of thyrotropin-releasing hormone (TRH) on the actions of pentobarbital and other centrally acting drugs. 1975

G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff

Thyrotropin-releasing hormone (TRH) was found to antagonize pentobarbital-induced sleeping time and hypothermia. While 3 to 100 mg/kg of TRH reduced pentobarbital sleeping time when administered prior to the barbiturate, a dose-response relationship to TRH could not be established. However, doses of 10 to 100 mg/kg of TRH enhanced the lethality of pentobarbital when these compounds were administered simultaneously. Thyrotropin or L-triiodothyronine did not imitate and hypophysectomy did not reduce the effects of TRH, indicating that the pituitary is not essential for its antagonism of pentobarbital. Studies of TRH analogs provided further support of this view. In addition, TRH reduced the sleep and hypothermia produced by thiopental, amobarbital, secobarbital and phenobarbital, and it antagonized the hypothermia and reduced motor activity produced by chloral hydrate, reserpine, chlorpromazine and diazepam. Intracisternally administered TRH also reduced pentobarbital sleeping time and hypothermia, but melanocyte-stimulating hormone release-inhibiting factor and somatostatin administered by this route did not. While reduction of pentobarbital sleeping time by TRH could not be attributed to an affect on monoamine systems or to deamidated TRH, this action was reduced by intracisternally administered atropine, suggesting that cholinergic mechanisms may contribute to the effects of TRH. Thus, the results provide evidence that TRH acts on brain independent of an effect on the pituitary.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010424 Pentobarbital A short-acting barbiturate that is effective as a sedative and hypnotic (but not as an anti-anxiety) agent and is usually given orally. It is prescribed more frequently for sleep induction than for sedation but, like similar agents, may lose its effectiveness by the second week of continued administration. (From AMA Drug Evaluations Annual, 1994, p236) Mebubarbital,Mebumal,Diabutal,Etaminal,Ethaminal,Nembutal,Pentobarbital Sodium,Pentobarbital, Monosodium Salt,Pentobarbitone,Sagatal,Monosodium Salt Pentobarbital
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females

Related Publications

G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff
January 1980, Advances in experimental medicine and biology,
G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff
September 1983, Behavioral and neural biology,
G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff
September 1989, Molecular endocrinology (Baltimore, Md.),
G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff
June 1981, European journal of pharmacology,
G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff
March 1995, Nihon rinsho. Japanese journal of clinical medicine,
G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff
December 1999, Nihon rinsho. Japanese journal of clinical medicine,
G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff
April 1973, Harefuah,
G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff
July 2010, Nihon rinsho. Japanese journal of clinical medicine,
G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff
August 2005, Nihon rinsho. Japanese journal of clinical medicine,
G R Breese, and J M Cott, and B R Cooper, and A J Prange, and M A Lipton, and N P Plotnikoff
February 1980, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!