Voltage dependencies of the fast and slow gating modes of RIIA sodium channels. 1994

T E Hebert, and R Monette, and R J Dunn, and P Drapeau
Centre for Research in Neuroscience, McGill University, Montreal, Quebec, Canada.

Rat brain IIA sodium channel alpha-subunits were expressed in Xenopus oocytes, and the sodium currents were measured by intracellular voltage clamping with large agarose-tipped electrodes and by excised membrane patch-clamp recording to separate and characterize the properties of the fast and slow channel gating modes. The currents showed biexponential inactivation properties with fast and slow phases that could be isolated as distinct gating modes through differences in their inactivation properties. At holding potentials more negative than -55 mV, fast mode currents inactivated within a few milliseconds of depolarization, and could be distinguished by their rapid recovery from inactivation. Single sodium channels in the fast mode opened early after depolarization and rarely showed re-openings. At holding potentials positive to -55 mV, fast mode currents were inactivated, revealing slow mode currents which had slower activation and inactivation kinetics and showed sustained single channel activity during depolarizing pulses. The steady-state voltage dependencies of fast and slow mode activation were very similar. In contrast, slow mode inactivation occurred at potentials 27 mV more positive than fast mode inactivation. The slow mode appears to be due to destabilization of a voltage-insensitive conformation of the channel. The fast gating process dominated at high current levels, perhaps due to alpha-subunit interactions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

T E Hebert, and R Monette, and R J Dunn, and P Drapeau
January 2000, Pflugers Archiv : European journal of physiology,
T E Hebert, and R Monette, and R J Dunn, and P Drapeau
February 1990, Neuron,
T E Hebert, and R Monette, and R J Dunn, and P Drapeau
May 1997, Journal of neurophysiology,
T E Hebert, and R Monette, and R J Dunn, and P Drapeau
June 2012, Biophysical journal,
T E Hebert, and R Monette, and R J Dunn, and P Drapeau
July 2010, The Journal of general physiology,
T E Hebert, and R Monette, and R J Dunn, and P Drapeau
December 1998, Journal of bioenergetics and biomembranes,
T E Hebert, and R Monette, and R J Dunn, and P Drapeau
July 1996, Pflugers Archiv : European journal of physiology,
T E Hebert, and R Monette, and R J Dunn, and P Drapeau
January 1986, Annals of the New York Academy of Sciences,
T E Hebert, and R Monette, and R J Dunn, and P Drapeau
April 2017, Molecular pharmacology,
Copied contents to your clipboard!