Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. 1994

T Leustek, and M Murillo, and M Cervantes
Center for Agricultural Molecular Biology, Rutgers University, New Brunswick, New Jersey 08903.

ATP sulfurylase, the first enzyme in the sulfate assimilation pathway of plants, catalyzes the formation of adenosine phosphosulfate from ATP and sulfate. Here we report the cloning of a cDNA encoding ATP sulfurylase (APS1) from Arabidopsis thaliana. APS1 was isolated by its ability to alleviate the methionine requirement of an ATP sulfurylase mutant strain of Saccharomyces cerevisiae (yeast). Expression of APS1 correlated with the presence of ATP sulfurylase enzyme activity in cell extracts. APS1 is a 1748-bp cDNA with an open reading frame predicted to encode a 463-amino acid, 51,372-D protein. The predicted amino acid sequence of APS1 is similar to ATP sulfurylase of S. cerevisiae, with which it is 25% identical. Two lines of evidence indicate that APS1 encodes a chloroplast form of ATP sulfurylase. Its predicted amino-terminal sequence resembles a chloroplast transit peptide; and the APS1 polypeptide, synthesized in vitro, is capable of entering isolated intact chloroplasts. Several genomic DNA fragments that hybridize with the APS1 probe were identified. The APS1 cDNA hybridizes to three species of mRNA in leaves (1.85, 1.60, and 1.20 kb) and to a single species of mRNA in roots (1.85 kb).

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013430 Sulfate Adenylyltransferase An enzyme that catalyzes the activation of sulfate ions by ATP to form adenosine-5'-phosphosulfate and pyrophosphate. This reaction constitutes the first enzymatic step in sulfate utilization following the uptake of sulfate. EC 2.7.7.4. ATP Sulfurylase,Sulfurylase,Adenylyltransferase, Sulfate,Sulfurylase, ATP
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

T Leustek, and M Murillo, and M Cervantes
February 1995, Plant physiology,
T Leustek, and M Murillo, and M Cervantes
May 2000, The Journal of biological chemistry,
T Leustek, and M Murillo, and M Cervantes
January 2021, Frontiers in bioengineering and biotechnology,
T Leustek, and M Murillo, and M Cervantes
February 1992, Plant molecular biology,
T Leustek, and M Murillo, and M Cervantes
December 1999, Glycoconjugate journal,
T Leustek, and M Murillo, and M Cervantes
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!