Influenza virus host resistance models in mice and rats: utilization for immune function assessment and immunotoxicology. 1994

H Lebrec, and G R Burleson
United States Environmental Protection Agency, Health Effects Research Laboratory, Research Triangle Park, North Carolina 27711.

Each year influenza viruses are responsible for epidemic respiratory diseases with excess morbidity and mortality. The severity of influenza diseases ranges from mild upper respiratory tract infections to severe lower respiratory tract infections involving pneumonia, bronchiolitis and coincidental bacterial super-infections. The immune response to influenza viruses can be schematically divided into a cascade of non-specific and specific functions. These functions are involved at different well defined time points after infection. We describe in this manuscript three influenza models utilized in our laboratory: (i) a highly virulent influenza virus (influenza A/Hong Kong/8/68 (H3N2) virus) adapted to B6C3F1 mice, (ii) a mouse-adapted influenza A/Port Chalmers/1/73 (H3N2) virus, and (iii) a rat-adapted influenza virus (RAIV) model (influenza A/Port Chalmers/1/73 (H3N2)). This rat-adapted influenza model has been mainly utilized as a model to assess local immunotoxic effects of inhaled environmental pollutants such as phosgene. These host resistance models are also useful for assessing the effect of systemically-induced immunosuppression or immunomodulation by drugs or chemicals on the local pulmonary immune response to influenza virus. The comparison of these different models allowed two major conclusions: (a) viral replication and mortality are two different endpoints and are not necessarily linked (no mortality was observed with Port Chalmers virus in the mouse although the virus replicates to high titers in the lung with a kinetic pattern comparable to the one obtained with Hong Kong virus), (b) mortality, viral replication, and immune function assessment are different endpoints that can be used, depending on the question addressed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009976 Orthomyxoviridae Infections Virus diseases caused by the ORTHOMYXOVIRIDAE. Orthomyxovirus Infections,Infections, Orthomyxoviridae,Infections, Orthomyxovirus,Swine Influenza,Infection, Orthomyxoviridae,Infection, Orthomyxovirus,Influenza, Swine,Orthomyxoviridae Infection,Orthomyxovirus Infection
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D010948 Viral Plaque Assay Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE. Bacteriophage Plaque Assay,Assay, Bacteriophage Plaque,Assay, Viral Plaque,Assays, Bacteriophage Plaque,Assays, Viral Plaque,Bacteriophage Plaque Assays,Plaque Assay, Bacteriophage,Plaque Assay, Viral,Plaque Assays, Bacteriophage,Plaque Assays, Viral,Viral Plaque Assays
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

H Lebrec, and G R Burleson
July 2000, Immunopharmacology,
H Lebrec, and G R Burleson
July 1993, Fundamental and applied toxicology : official journal of the Society of Toxicology,
H Lebrec, and G R Burleson
January 1975, Developments in biological standardization,
H Lebrec, and G R Burleson
January 2007, Methods (San Diego, Calif.),
H Lebrec, and G R Burleson
September 1985, Toxicology and applied pharmacology,
H Lebrec, and G R Burleson
January 2022, Frontiers in cellular and infection microbiology,
H Lebrec, and G R Burleson
March 1984, Toxicology and applied pharmacology,
H Lebrec, and G R Burleson
September 2019, Pharmaceuticals (Basel, Switzerland),
Copied contents to your clipboard!