Potassium currents in type II vestibular hair cells isolated from the guinea-pig's crista ampullaris. 1993

C Griguer, and C J Kros, and A Sans, and J Lehouelleur
Laboratoires de Neurophysiologie Cellulaire et Sensorielle, INSERM U254, Université de Montpellier II, France.

Type II vestibular hair cells were isolated from cristae ampullares of guinea-pig and maintained in vitro for 2-3 h. Outward membrane currents were studied under whole-cell voltage-clamp conditions. Type II hair cells had resting potentials of about -45 mV. Depolarizing voltage steps from a holding potential of -80 or -90 mV induced time- and voltage-dependent outward currents which slowly decayed to a sustained level. Tail currents reversed at about -70 mV, indicating that the outward currents were mainly carried by potassium ions. The currents had an activation threshold around -50 mV. The transient component was completely removed by a depolarizing pre-pulse positive to -10 mV. While bath application of 4-aminopyridine (5 mM) reduced both components, extracellular tetraethylammonium (10 mM) or zero calcium preferentially diminished the sustained current. We conclude that at least two potassium conductances are present, a delayed rectifier with a relatively fast inactivation and a calcium-dependent potassium current. Depolarizing current injections induced an electrical resonance in the voltage responses, with a frequency of 25-100 Hz, larger currents causing higher frequencies.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012665 Semicircular Canals Three long canals (anterior, posterior, and lateral) of the bony labyrinth. They are set at right angles to each other and are situated posterosuperior to the vestibule of the bony labyrinth (VESTIBULAR LABYRINTH). The semicircular canals have five openings into the vestibule with one shared by the anterior and the posterior canals. Within the canals are the SEMICIRCULAR DUCTS. Semi-Circular Canals,Canal, Semi-Circular,Canal, Semicircular,Semi Circular Canals,Semi-Circular Canal,Semicircular Canal
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015761 4-Aminopyridine One of the POTASSIUM CHANNEL BLOCKERS with secondary effect on calcium currents which is used mainly as a research tool and to characterize channel subtypes. 4-Aminopyridine Sustained Release,Dalfampridine,Fampridine-SR,Pymadine,VMI-103,4 Aminopyridine,4 Aminopyridine Sustained Release,Fampridine SR,Sustained Release, 4-Aminopyridine,VMI 103,VMI103
D018069 Hair Cells, Vestibular Sensory cells in the acoustic maculae with their apical STEREOCILIA embedded in a gelatinous OTOLITHIC MEMBRANE. These hair cells are stimulated by the movement of otolithic membrane, and impulses are transmitted via the VESTIBULAR NERVE to the BRAIN STEM. Hair cells in the saccule and those in the utricle sense linear acceleration in vertical and horizontal directions, respectively. Vestibular Hair Cells,Hair Cell, Vestibular,Vestibular Hair Cell

Related Publications

C Griguer, and C J Kros, and A Sans, and J Lehouelleur
February 1991, Hearing research,
C Griguer, and C J Kros, and A Sans, and J Lehouelleur
November 1992, Journal of neurophysiology,
C Griguer, and C J Kros, and A Sans, and J Lehouelleur
January 1992, Journal of vestibular research : equilibrium & orientation,
C Griguer, and C J Kros, and A Sans, and J Lehouelleur
January 1993, Zhonghua er bi yan hou ke za zhi,
C Griguer, and C J Kros, and A Sans, and J Lehouelleur
July 1994, Journal of neurophysiology,
C Griguer, and C J Kros, and A Sans, and J Lehouelleur
July 1996, Neuroreport,
C Griguer, and C J Kros, and A Sans, and J Lehouelleur
December 2003, Brain research,
C Griguer, and C J Kros, and A Sans, and J Lehouelleur
July 2003, Journal of neurophysiology,
C Griguer, and C J Kros, and A Sans, and J Lehouelleur
January 2003, Neuroscience,
C Griguer, and C J Kros, and A Sans, and J Lehouelleur
January 1993, Neuroscience letters,
Copied contents to your clipboard!