Nature of the increase in renal ornithine decarboxylase activity after cycloheximide administration in the rat. 1975

J H Levine, and W E Nicholson, and D N Orth

The present study was designed to determine whether the increase in rat renal ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity after cycloheximide administration was a primary effect on the kidney or was a secondary effect of adrenal or pituitary hormones released in response to the drug. Renal ornithine decarboxylase activity was reduced approximately 70% 1 hr after intraperitoneal administration of doses of cycloheximide that also inhibited renal protein synthesis by 68-95% within 1 hr. Protein synthesis began to recover by the second hour, accompanied by a rise in decarboxylase activity that reached a peak about six times greater than pretreatment values at 8 hr, then gradually declined to preinjection levels by 16 hr. Peak ornithine decarboxylase activity was directly proportional to cycloheximide doses up to 250 mug; larger doses, which almost abolished protein synthesis for 8 hr, where inhibitory. Plasma corticosterone rose rapidly after cycloheximide, reached a peak at 2 hr, then fell to baseline by 8 hr. Corticosterone response was also dose-dependent up to 250 mug, but larger doses were inhibitorymadrenalectomy did not reduce decarboxylase activity response to cycloheximide, nor did cortisol administration enhance it. Hypophysectomy greatly reduced baseline renal decarboxylase activity within 9 hr and all but abolished the increase in enzyme activity normally seen after cycloheximide administration to the intact rat. The hypophysectomized animal exhibited apparent increased sensitivity to cycloheximide, since a smaller dose of the drug caused a reduction in renal protein synthesis similar to that seen with a larger dose in the intact rat. As protein synthesis was recovering in the hypophysectomized animals, renal decarboxylase activity responded adequately to the injection of a crude pituitary extract. These data suggest that renal ornithine decarboxylase turnover is rapid, that baseline activity is.maintained by new protein synthesis, and that the increase in renal enzyme activity after cycloheximide is in larger part dependent upon pituitary hormone action.

UI MeSH Term Description Entries
D007016 Hypophysectomy Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed) Hypophysectomies
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)

Related Publications

J H Levine, and W E Nicholson, and D N Orth
October 1996, Metabolism: clinical and experimental,
J H Levine, and W E Nicholson, and D N Orth
December 1992, Cell biochemistry and function,
J H Levine, and W E Nicholson, and D N Orth
August 1988, The American journal of physiology,
J H Levine, and W E Nicholson, and D N Orth
November 1980, Life sciences,
J H Levine, and W E Nicholson, and D N Orth
December 1982, Endocrinology,
J H Levine, and W E Nicholson, and D N Orth
August 1987, Cell biology international reports,
J H Levine, and W E Nicholson, and D N Orth
September 1977, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
J H Levine, and W E Nicholson, and D N Orth
June 1972, Journal of neurochemistry,
J H Levine, and W E Nicholson, and D N Orth
January 1989, Radiobiologiia,
Copied contents to your clipboard!