Lipid metabolism in adipose tissue during lactation: a model of a metabolic control system. 1994

J P McNamara
Department of Animal Sciences and Nutrition Program, Washington State University, Pullman 99164-6320.

The flux of energy-yielding compounds through the pathways of lipogenesis, esterification into triglycerides and lipolysis in adipose tissue plays a pivotal role in supplying the demands of lactation and maternal health. The critical importance of these pathways is demonstrated by the number of highly coordinated and redundant metabolic control elements that regulate the enzyme activity in these pathways, including protein and several steroid hormones, catecholamines, and blood concentrations of several nutrients. Control on these pathways is exerted by all of these elements during lactation. Insights have been gained recently into the adaptations of these pathway reactions due to genetic propensity for milk production, stage of lactation, and intake of energy-yielding components such as starch, cellulose and triglycerides. The rates of these pathways vary exponentially with the intakes of key substrates and demands for milk precursors. The parameters of equations describing these pathways are not constant, but vary with genotype and with prolonged changes in nutritional and environmental conditions. Two major regulatory systems are critical to alterations of carbon flux during the entire lactational period. One is the interaction of growth hormone and insulin to control lipogenesis; the other is the counter-regulation by norepinephrine and insulin on cyclic AMP-initiated enzyme phosphorylation to regulate lipolysis. Examples of specific control points having a critical impact on lactational success and that are associated with genetic selection for milk production are the activities of acetyl-CoA carboxylase and hormone sensitive lipase. Further insights into the mechanisms of these adaptations will help us to improve the efficiency of metabolic flux during lactation.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008066 Lipolysis The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues. Lipolyses
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D004951 Esterification The process of converting an acid into an alkyl or aryl derivative. Most frequently the process consists of the reaction of an acid with an alcohol in the presence of a trace of mineral acid as catalyst or the reaction of an acyl chloride with an alcohol. Esterification can also be accomplished by enzymatic processes. Esterifications
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D050356 Lipid Metabolism Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS. Metabolism, Lipid

Related Publications

J P McNamara
June 1980, Biochemical Society transactions,
J P McNamara
March 2005, The Journal of surgical research,
J P McNamara
May 1981, Molecular and cellular endocrinology,
J P McNamara
January 1994, Advances in experimental medicine and biology,
J P McNamara
September 1996, The American journal of physiology,
J P McNamara
December 2023, Current opinion in genetics & development,
Copied contents to your clipboard!