Contribution of presynaptic GABA-B receptors to paired-pulse depression of GABA-responses in the hippocampus. 1994

H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
Research and Development Department, Pharmaceuticals Division, Ciba-Geigy Ltd., Basel, Switzerland.

The synaptic release of gamma-aminobutyric acid (GABA) is thought to be regulated by presynaptic GABA receptors of the B-type. It was the goal of this study to validate this concept electrophysiologically using four selective antagonists of GABA-B receptors. Experiments were performed in hippocampal slices exposed to 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX 30 microM) and D-2-amino-5-phosphonopentanoate (AP5 40 microM) in order to block excitatory transmission. Consequently, electrical stimulation of the Schaffer collateral/commissural fibers evoked monosynaptic inhibitory potentials (IPSP) recorded intracellularly from CA 1 pyramidal neurons. In a test called paired-pulse paradigm two identical stimuli were applied at intervals ranging from 350 to 4000 ms. The IPSP evoked by the second stimulation was smaller in its amplitude over the entire interval range. This reduction of the second GABA-response is thought to result from the activation of presynaptic GABA receptors. The GABA-uptake inhibitor SKF 89976 (100 microM) increased the amplitude of the IPSP's and increased the ratio of the first to the second IPSP amplitude. These findings indicate that the drug increases the GABA content in the synaptic cleft leading to a facilitation of paired-pulse depression. The actions of four bath-applied GABA-B receptor antagonists were examined in the paired-pulse paradigm. None of these compounds abolished paired-pulse inhibition completely even at concentrations higher than those required to block postsynaptic GABA-B responses. The potent GABA-B antagonists CGP 55845 and CGP 52432 reduced paired-pulse depression by 80% at 10 microM (maximal effect).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010721 Phosphinic Acids Inorganic or organic derivatives of phosphinic acid, H2PO(OH). They include phosphinates and phosphinic acid esters. Hypophosphorous Acids,Phosphinic Acid,Acid, Phosphinic,Acids, Hypophosphorous,Acids, Phosphinic
D011412 Propanolamines AMINO ALCOHOLS containing the propanolamine (NH2CH2CHOHCH2) group and its derivatives. Aminopropanols
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001596 Benzylamines Toluenes in which one hydrogen of the methyl group is substituted by an amino group. Permitted are any substituents on the benzene ring or the amino group. Phenylmethylamine,alpha-Aminotoluene,alpha Aminotoluene

Related Publications

H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
May 1990, The Journal of physiology,
H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
February 2002, Journal of neurophysiology,
H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
January 2015, Neuroscience letters,
H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
December 2005, Neuroscience research,
H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
March 2013, Neuropharmacology,
H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
October 2002, The Journal of physiology,
H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
January 1990, Annals of the New York Academy of Sciences,
H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
February 1999, Epilepsy research,
H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
January 1998, Neuron,
H R Olpe, and M W Steinmann, and K Greiner, and M F Pozza
March 2009, Pharmacological research,
Copied contents to your clipboard!