Propylthiouracil treatment decreases the susceptibility to oxygen radical-induced lung damage in newborn rats exposed to prolonged hyperoxia. 1994

M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
Department of Pediatrics, University of Miami School of Medicine, Florida 33136.

In newborn rats, antenatal thyroid stimulation with thyroid-releasing hormone is associated with developmental decreases in pulmonary antioxidant enzyme activities and decreased survival rates during prolonged hyperoxic exposure, with pathologic evidence of increased O2-induced lung damage. Propylthiouracil (PTU), in addition to its antithyroid effects, reportedly has antioxidant properties. To explore possible pulmonary protective effects from both the antithyroid and antioxidant properties of PTU, we administered PTU (0.015%) in drinking water to timed-pregnant rats for the final 10 d of gestation and during lactation; control rats received untreated water. The survival rate of the PTU-treated pups when placed in more than 95% O2 at birth was consistently higher at all time periods in hyperoxia from 6 d [PTU, 81 of 81 (100%); control pups, 70 of 84 (83%); p < 0.01] to 14 d [PTU, 41 of 53 (77%); control pups = 14 of 56 (25%); p < 0.01]. Further evidence of increased tolerance to more than 95% O2 in PTU pups included a significant decrease in the incidence of microscopic intraalveolar edema, decreased lipid peroxidation (malondialdehyde), and a significant increase in lung tissue surfactant-related phospholipids compared with O2-exposed control pups. No differences were present in lung structural maturation, antioxidant enzyme activity response to hyperoxia, or lung tissue O2 radical formation in more than 95% O2. We conclude that PTU treatment has important postnatal effects that protect newborn rats against oxidant-induced lung injury and lethality during hyperoxia, which may be related to PTU inhibition of thyroid hormone production, effect on O2 metabolism, or its direct antioxidant properties.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008431 Maternal-Fetal Exchange Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission. Transplacental Exposure,Exchange, Maternal-Fetal,Exposure, Transplacental,Maternal Fetal Exchange
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011441 Propylthiouracil A thiourea antithyroid agent. Propythiouracil inhibits the synthesis of thyroxine and inhibits the peripheral conversion of throxine to tri-iodothyronine. It is used in the treatment of hyperthyroidism. (From Martindale, The Extra Pharmacopeoia, 30th ed, p534) 6-Propyl-2-Thiouracil,6 Propyl 2 Thiouracil
D005260 Female Females
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
September 2006, Pediatric research,
M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
February 2011, The Journal of nutrition,
M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
April 2003, Zhonghua er ke za zhi = Chinese journal of pediatrics,
M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
October 2023, Pediatric research,
M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
April 2002, American journal of respiratory cell and molecular biology,
M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
March 2016, Pediatrics international : official journal of the Japan Pediatric Society,
M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
June 2013, Respiratory physiology & neurobiology,
M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
January 2005, Biology of the neonate,
M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
December 2012, Histology and histopathology,
M Rodriguez-Pierce, and I R Sosenko, and P Whitney, and L Frank
December 2018, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition,
Copied contents to your clipboard!