Expression of mRNA for natriuretic peptide receptor subtypes in bovine kidney. 1994

T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
Institute of Nephrology, Niigata University School of Medicine, Japan.

The localization of mRNA for atrial natriuretic peptide (ANP) receptor subtypes (A, B, C) in the kidney was examined. Quantitative analysis of the ribonuclease protection assay showed that the numbers of type A receptor (ANPRA) mRNA were 6.9 x 10(7) in the glomeruli and 10.4 x 10(7) molecules/micrograms of total RNA in the inner medulla, and that of type C receptor (ANPRC) mRNA was 21.7 x 10(7) molecules/micrograms of total RNA in the glomeruli. The type B receptor (ANPRB) mRNA was present in smaller numbers (4.5-4.9 x 10(6) molecules/micrograms of total RNA) evenly throughout the kidney fractions. In situ hybridization demonstrated both ANPRA and ANPRC mRNA selectively in the glomerular epithelial cells and ANPRA mRNA in the collecting duct cells of the inner medulla. ANPRC was also localized on the foot processes of glomerular epithelial cells by immunohistochemistry using a specific antibody against the receptor. These results indicate that ANPRA is the major biologically active receptor for the ANP family of hormones in the kidney and is present selectively on the glomerular epithelial cells and inner medullary collecting duct cells. These cells are presumed to play a role in the regulation of glomerular filtration rate and sodium excretion induced by the family of ANP.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D017461 Receptors, Atrial Natriuretic Factor Cell surface proteins that bind ATRIAL NATRIURETIC FACTOR with high affinity and trigger intracellular changes influencing the behavior of cells. They contain intrinsic guanylyl cyclase activity. ANF Receptor,ANF Receptors,ANP Receptor,ANP Receptors,Atrial Natriuretic Factor Receptors,Atrial Natriuretic Peptides Receptors,Atriopeptin Receptors,Receptors, ANF,Receptors, Atriopeptin,Atrial Natriuretic Factor Receptor,Atrial Natriuretic Peptides Receptor,Receptors, ANP,Receptors, Atrial Natriuretic Peptides,Receptor, ANF,Receptor, ANP

Related Publications

T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
July 1990, The American journal of physiology,
T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
April 2008, Fish & shellfish immunology,
T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
December 1995, Clinical and experimental pharmacology & physiology. Supplement,
T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
November 1989, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
April 1997, Kidney international,
T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
January 1997, Gut,
T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
February 1994, Cellular and molecular neurobiology,
T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
July 1998, The Journal of endocrinology,
T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
August 1994, Molecular and cellular biochemistry,
T Yamamoto, and L Feng, and T Mizuno, and S Hirose, and K Kawasaki, and E Yaoita, and I Kihara, and C B Wilson
April 1990, The American journal of physiology,
Copied contents to your clipboard!