Estimation of peroxisomal beta-oxidation in rat heart by a direct assay of acyl-CoA oxidase. 1994

C Chu, and L F Mao, and H Schulz
Department of Chemistry, City College of City University of New York, NY 10031.

The contribution of peroxisomes to palmitate beta-oxidation in rat heart was estimated by either inhibiting mitochondrial beta-oxidation or measuring the activity of acyl-CoA oxidase. When respiratory inhibitors such as KCN or antimycin plus rotenone, or inhibitors of mitochondrial fatty acid uptake such as 2-tetradecylglycidic acid or 2-bromopalmitate, were used, degrees of inhibitions ranging from 24% to 87% were observed for palmitate beta-oxidation by a rat heart homogenate. Although the oxidation of palmitoyl-L-carnitine by coupled rat heart mitochondria was almost completely (94%) inhibited by KCN, the inhibition by antimycin plus rotenone was incomplete (77%) and was stimulated by L-carnitine. A direct assay of acyl-CoA oxidase, based on the spectrophotometric measurement at 300 nm of 2,4-decadienoyl-CoA formation from 4-trans-decenoyl-CoA, was evaluated with the aim of obtaining reliable values for the activity of this enzyme, which is presumed to catalyse the rate-limiting step of peroxisomal beta-oxidation. Activities determined by use of this assay were much higher than activities obtained by a coupled assay [Small, Burdett and Connock (1985) Biochem. J. 227, 205-210] commonly used to measure the activity of acyl-CoA oxidase. However, both methods yielded the same relative activities with different tissue homogenates. Based on an estimated palmitoyl-CoA oxidase activity of 0.3 nmol/min per mg of protein, the contribution of peroxisomes to palmitate beta-oxidation in a rat heart homogenate would optimally be 4%, and most likely is several-fold lower.

UI MeSH Term Description Entries
D008297 Male Males
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D042962 Acyl-CoA Oxidase An enzyme that catalyzes the first and rate-determining steps of peroxisomal beta-oxidation of fatty acids. It acts on COENZYME A derivatives of fatty acids with chain lengths from 8 to 18, using FLAVIN-ADENINE DINUCLEOTIDE as a cofactor. Acyl Coenzyme A Oxidase,Fatty Acid Acyl-CoA Oxidase,Fatty Acyl-CoA Oxidase,Fatty Acyl-Coenzyme A Oxidase,Acyl CoA Oxidase,Acyl-CoA Oxidase, Fatty,Fatty Acid Acyl CoA Oxidase,Fatty Acyl CoA Oxidase,Fatty Acyl Coenzyme A Oxidase,Oxidase, Acyl-CoA,Oxidase, Fatty Acyl-CoA
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

C Chu, and L F Mao, and H Schulz
April 1985, The Biochemical journal,
C Chu, and L F Mao, and H Schulz
February 1988, Biochimica et biophysica acta,
C Chu, and L F Mao, and H Schulz
January 2002, The Journal of pediatrics,
C Chu, and L F Mao, and H Schulz
January 1998, Ryoikibetsu shokogun shirizu,
C Chu, and L F Mao, and H Schulz
November 1984, Nutrition reviews,
C Chu, and L F Mao, and H Schulz
September 1987, Biochimica et biophysica acta,
C Chu, and L F Mao, and H Schulz
January 2001, Molecular and cellular biochemistry,
C Chu, and L F Mao, and H Schulz
December 1989, Biochimica et biophysica acta,
Copied contents to your clipboard!