Binding of recombinant annexin V to endothelial cells: effect of annexin V binding on endothelial-cell-mediated thrombin formation. 1994

W L van Heerde, and S Poort, and C van 't Veer, and C P Reutelingsperger, and P G de Groot
Department of Haematology, University Hospital Utrecht, The Netherlands.

Annexin V binds with high affinity to procoagulant phospholipid vesicles and thereby inhibits the procoagulant reactions catalysed by these surfaces in vitro. In vivo, vascular endothelial cells are known to catalyse the formation of thrombin by the expression of binding sites at which procoagulant complexes can assemble. Here, we have studied the binding capacity of recombinant annexin V (rANV) to quiescent, phorbol 12-myristate 13-acetate (PMA)- and tumour necrosis factor alpha (TNF-alpha)-stimulated cultured human umbilical-vein endothelial cells (HUVEC). The dissociation constant (Kd) was 15.5 +/- 3.3 nM and the number of binding sites was 8.8 (+/- 3.9) x 10(6)/cell. These binding parameters did not change significantly during a 30 h incubation period with PMA or TNF-alpha. rANV inhibited HUVEC-mediated factor Xa formation via the extrinsic as well as the intrinsic route. Activation of factor X by the tissue factor-factor VII-factor X complex and tenase complex was inhibited with IC50 values of 43 +/- 30 nM and 33 +/- 24 nM respectively. Endothelial-cell-mediated generation of thrombin by the prothrombinase complex was inhibited by rANV with an IC50 of 16 +/- 12 nM. Preincubation of rANV with the endothelial cells did not significantly influence the IC50 values. These results show that rANV binds to the same extent to quiescent, PMA- and TNF-stimulated HUVEC, and, as a result of this binding, rANV efficiently inhibits endothelial-cell-mediated thrombin formation.

UI MeSH Term Description Entries
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001777 Blood Coagulation The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot. Blood Clotting,Coagulation, Blood,Blood Clottings,Clotting, Blood
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D013917 Thrombin An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN. Thrombase,Thrombin JMI,Thrombin-JMI,Thrombinar,Thrombostat,alpha-Thrombin,beta,gamma-Thrombin,beta-Thrombin,gamma-Thrombin,JMI, Thrombin
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D017304 Annexin A5 A protein of the annexin family isolated from human PLACENTA and other tissues. It inhibits cytosolic PHOSPHOLIPASE A2, and displays anticoagulant activity. Annexin V,Placental Anticoagulant Protein I,Anchorin CII,Calphobindin I,Endonexin II,Lipocortin V,Lipocortin-V

Related Publications

W L van Heerde, and S Poort, and C van 't Veer, and C P Reutelingsperger, and P G de Groot
January 1992, Seminars in thrombosis and hemostasis,
W L van Heerde, and S Poort, and C van 't Veer, and C P Reutelingsperger, and P G de Groot
September 1981, The Journal of cell biology,
W L van Heerde, and S Poort, and C van 't Veer, and C P Reutelingsperger, and P G de Groot
February 1983, Blood,
W L van Heerde, and S Poort, and C van 't Veer, and C P Reutelingsperger, and P G de Groot
January 2022, PloS one,
W L van Heerde, and S Poort, and C van 't Veer, and C P Reutelingsperger, and P G de Groot
June 2000, British journal of haematology,
W L van Heerde, and S Poort, and C van 't Veer, and C P Reutelingsperger, and P G de Groot
January 1981, Biochemistry,
W L van Heerde, and S Poort, and C van 't Veer, and C P Reutelingsperger, and P G de Groot
April 1993, International journal of cancer,
W L van Heerde, and S Poort, and C van 't Veer, and C P Reutelingsperger, and P G de Groot
July 1986, Seminars in thrombosis and hemostasis,
W L van Heerde, and S Poort, and C van 't Veer, and C P Reutelingsperger, and P G de Groot
May 1979, The Journal of biological chemistry,
Copied contents to your clipboard!