The structure of the human yolk sac: a scanning and transmission electron microscopic analysis. 1994

J Pereda, and S Correr, and P M Motta
Laboratorio de Embriologia y Microscopia Electronica, Facultad de Medicina, Universidad de Chile, Santiago.

Human yolk sacs were studied by light, transmission and scanning electron microscopy. Twelve human embryos at Carnegie stages ranging from 13 to 20 (28-49 days of gestation) were used for this research. The series of events which occur in the yolk sac wall during its period of maximum functional activity were recorded. The endodermal epithelium consisted of a single layer of columnar cells which, through cellular proliferation, formed endodermal cords which became cavitated, thereby forming endodermal vesicles. At the peak of yolk sac activity, intercellular spaces became very large and isolated individual endodermal cells. The epithelial cells were characterized by numerous microvilli on their free surface, high pinocytotic activity and by the formation of dense cisternae. Abundant intracellular vesicles fused together to empty their contents into the endodermal vesicles. The luminal surfaces of both intracellular and endodermal vesicles presented microvilli. The endodermal cells were characterized by an abundant granular endoplasmic reticulum, a well-developed Golgi apparatus, numerous mitochondria and glycogen particles. Endodermal vesicles were normally seen opening into the vitelline cavity through an endodermal orifice. The surface of the outer mesothelium was covered by numerous lengthy microvilli which were denser here than in the endodermal layer. A mucus-like material, present on the surface of the mesothelium, showed relatively few alterations during the study period. The mesothelial cells were less rich in organelles and far less active than the endodermal cells. The microanatomy of the endoderm supports the contention that its cells serve as absorptive structures as well as sites of protein synthesis during early embryonic development. Therefore, the endodermal vesicles could function as a pump regulating the fluid volume into the vitelline cavity, thereby avoiding the collapse of the organ due to the absorptive activity of the endodermal cells. Furthermore, mesothelial microvilli together with their mucous material harbor a layer of serous exudate and thus create a lubricated cushion designed to protect the thin mesothelium from frictional damage.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J Pereda, and S Correr, and P M Motta
December 1973, Virchows Archiv. B, Cell pathology,
J Pereda, and S Correr, and P M Motta
January 1971, Acta anatomica,
J Pereda, and S Correr, and P M Motta
February 1996, Kaibogaku zasshi. Journal of anatomy,
J Pereda, and S Correr, and P M Motta
June 1983, Nippon Ganka Gakkai zasshi,
J Pereda, and S Correr, and P M Motta
January 1983, Histopathology,
J Pereda, and S Correr, and P M Motta
January 1972, Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. Albrecht von Graefe's archive for clinical and experimental ophthalmology,
J Pereda, and S Correr, and P M Motta
January 2002, ORL; journal for oto-rhino-laryngology and its related specialties,
Copied contents to your clipboard!