Establishment of pure neuronal and muscle precursor cell cultures from Drosophila early gastrula stage embryos. 1994

I Hayashi, and M Perez-Magallanes
Department of Molecular Genetics, Beckman Research Institute of the City of Hope, Duarte, California 91010.

Primary cultures of Drosophila gastrula stage embryonic cells will divide and terminally differentiate into morphologically recognizable neurons and muscles. The phenotypically mixed nature of this primary culture system has made it difficult to effectively analyze various parameters of cell growth and differentiation for individual cell types. We report here a simple and economic method to separate early embryonic precursors for different cell types, using a shallow linear reorienting Ficoll gradient at unit gravity. The separated cells were collected into fractions, cultured, and analyzed for their growth and differentiation patterns. The larger and denser cells of the first fractions differentiated to yield pure neuronal cultures, as judged by morphologic, immunologic, and biochemical criteria. Cells in the last fractions differentiated into a predominantly muscle-enriched cell population, which also contained a very small percentage of neurons morphologically distinct from those in the pure neuronal fractions. Approximately 35% of the early gastrula stage embryonic cells differentiate into neuronal cells, and 65% of the non-neuronal lineage cells later develop into predominantly muscle population. The method is highly reproducible, can process 3 x 10(7) cells per procedure, and the recovery is > 90% of the input cells. The separated cells are suitable for cell biological analyses as well as for biochemical and molecular studies of neuron and muscle precursors.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila

Related Publications

I Hayashi, and M Perez-Magallanes
February 2011, Journal of visualized experiments : JoVE,
I Hayashi, and M Perez-Magallanes
January 2007, Journal of visualized experiments : JoVE,
I Hayashi, and M Perez-Magallanes
January 2007, Journal of visualized experiments : JoVE,
I Hayashi, and M Perez-Magallanes
January 2012, Methods in molecular biology (Clifton, N.J.),
I Hayashi, and M Perez-Magallanes
November 1996, European journal of morphology,
I Hayashi, and M Perez-Magallanes
September 1995, Molecular marine biology and biotechnology,
I Hayashi, and M Perez-Magallanes
December 2009, Stem cells and development,
Copied contents to your clipboard!