Indications of pre- and post-synaptic 5-HT1A receptor interactions in feeding behavior and neuroendocrine regulation. 1994

M Jhanwar-Uniyal, and B Moorjani, and A H Kahn
Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021.

This bipartite study uses behavioral and biochemical means to explore the involvement of both pre- and post-synaptic 5-HT1A receptors in the control of food intake and neuroendocrine regulation. In the pharmacological study, the administration of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; 60 micrograms/kg b.wt., i.p.) to rats caused a significant increase in 2 h intake of a high carbohydrate (CARB)/sugar diet (P < 0.05) during the relatively inactive feeding period of the late light cycle. No significant change was detected in the intake of Purina laboratory chow at 2 h, or of the intake of either diet at 4 h and 24 h after 8-OH-DPAT administration. Injection of 8-OH-DPAT induced a drop in insulin levels in rats maintained on high CARB/sugar diets only (-90%; P < 0.05). It also caused an increase in circulating glucose levels in both high CARB/sugar (240%; P < 0.01) and chow fed (123%; P < 0.05) rats; it did so more intensely in high CARB/sugar-fed rats. In the biochemical study, radioligand binding techniques were used to assess 5-HT1A receptor density in the hypothalamus, as well as the relationship between 5-HT1A receptors and circulating levels of insulin and glucose. Chronic and acute administration (25 mg/kg b.wt./5 injections, and 50 mg/kg b.wt., respectively, i.p.) of the potent hypoglycemic agent tolbutamide (TOL) caused a significant increase in 5-HT1A receptor density (+243% and +132.6%, respectively; P < 0.05) in the medial hypothalamus but not in the lateral hypothalamus, as compared to vehicle-treated rats. Chronic glucose replacement therapy showed a trend towards reversing the depressed circulating glucose levels as well as the medial hypothalamic 5-HT1A receptor density to control levels. These studies indicate that the pre-synaptic mechanism of 8-OH-DPAT-induced hyperphagia may require specific circulating levels of insulin and glucose, which are regulated via post-synaptic 5-HT1A receptors.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D004040 Dietary Carbohydrates Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277) Carbohydrates, Dietary,Carbohydrate, Dietary,Dietary Carbohydrate
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary

Related Publications

M Jhanwar-Uniyal, and B Moorjani, and A H Kahn
January 1995, Life sciences,
M Jhanwar-Uniyal, and B Moorjani, and A H Kahn
January 2007, Journal of psychopharmacology (Oxford, England),
M Jhanwar-Uniyal, and B Moorjani, and A H Kahn
July 2005, Pharmacology, biochemistry, and behavior,
M Jhanwar-Uniyal, and B Moorjani, and A H Kahn
December 1994, The Journal of pharmacology and experimental therapeutics,
M Jhanwar-Uniyal, and B Moorjani, and A H Kahn
September 2010, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
M Jhanwar-Uniyal, and B Moorjani, and A H Kahn
January 2014, Frontiers in behavioral neuroscience,
M Jhanwar-Uniyal, and B Moorjani, and A H Kahn
April 1996, Neuropharmacology,
M Jhanwar-Uniyal, and B Moorjani, and A H Kahn
January 2009, British journal of pharmacology,
M Jhanwar-Uniyal, and B Moorjani, and A H Kahn
June 2019, Biochimie,
Copied contents to your clipboard!