Platelet adhesion, shape change, and aggregation: rapid initiation and signal transduction events. 1994

A R Gear
Department of Biochemistry, University of Virginia, Charlottesville 22908.

Blood platelets are essential for hemostasis, and knowledge of their function is important for understanding both normal and pathologic situations. A number of approaches have been used to evaluate platelet adhesion, aggregation, and secretion, and within the last 10 years much interest has been directed to the biochemical mechanisms and signal transduction events occurring during these various phases of function. New information has come from development of technologies to evaluate the changes occurring immediately after platelet activation and consistent with the speed needed for hemostasis in the arterial circulation. Use of rapid flow and mixing technologies as seen in quenched-flow, continuous-flow, and stopped-flow devices has revealed that platelet aggregation, shape change, adhesion, and secretion begin within 1 s and may be nearly complete by 5 s. Biochemical changes such as in protein phosphorylation, calcium release, and phospholipid hydrolysis are clearly evident in hundreds of milliseconds. Therefore, it is necessary to understand these early events in signal transduction and to assess alterations that may occur in diseases such as diabetes.

UI MeSH Term Description Entries
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D048429 Cell Size The quantity of volume or surface area of CELLS. Cell Volume,Cell Sizes,Cell Volumes,Size, Cell,Sizes, Cell,Volume, Cell,Volumes, Cell

Related Publications

A R Gear
November 1972, Nature,
A R Gear
January 1972, Advances in experimental medicine and biology,
A R Gear
November 2001, Laboratory investigation; a journal of technical methods and pathology,
A R Gear
July 1967, British journal of haematology,
A R Gear
June 2020, Biomechanics and modeling in mechanobiology,
A R Gear
January 1977, Acta clinica Belgica,
A R Gear
August 1972, British medical journal,
Copied contents to your clipboard!