Histaminergic activation of the hypothalamic-pituitary-adrenal axis. 1994

A Kjaer, and P J Larsen, and U Knigge, and J Warberg
Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.

Centrally administered histamine (HA) stimulates the secretion of adenohypophysial POMC-derived peptides, which subsequently cause release of corticosterone. The effect of HA on POMC-derived peptide release is indirect, and it is possible that hypothalamic neurons containing corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), or oxytocin (OT) are involved in the mediation of this response. We studied the effect of HA on: 1) expression of CRH, AVP, and OT messenger RNA (mRNA) at the hypothalamic level; 2) expression of c-fos and POMC mRNA at the pituitary level; and 3) peripheral plasma levels of AVP, OT, ACTH, beta-endorphin (beta-END), and corticosterone. HA (270 nmol) infused intracerebroventricularly increased the expression of CRH, AVP, and OT mRNA in the paraventricular nucleus as well as that of OT mRNA in the supraoptic nucleus of the hypothalamus. At the pituitary level the expression of mRNA for c-fos and POMC increased in the anterior but not in the intermediate lobe in response to HA. Plasma levels of AVP, OT, ACTH, beta-END, and corticosterone all increased in response to central HA administration. Circulating levels of AVP and OT peaked after 5 min, ACTH and beta-END after 15 min, whereas corticosterone levels were highest after 30 min. In concert with our earlier discoveries, the present data support the hypothesis that HA-induced secretion of ACTH and beta-END is mediated via central activation of hypothalamic neuroendocrine neurons containing CRH, AVP, and/or OT.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D011333 Pro-Opiomelanocortin A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP). POMC,Pro-Opiocortin,ACTH-Endorphin Precursor,ACTH-beta-Lipotropin Precursor,Corticotropin-beta-Lipotropin Precursor,Endorphin-ACTH Precursor,Opiocortin,Pre-POMC,Pre-pro-opiocortin,Preproopiomelanocortin,Pro-ACTH-Endorphin,Pro-Opio-Melanocortin,Proopiocortin,Proopiomelanocortin,ACTH Endorphin Precursor,ACTH beta Lipotropin Precursor,Corticotropin beta Lipotropin Precursor,Endorphin ACTH Precursor,Pre POMC,Pre pro opiocortin,Pro ACTH Endorphin,Pro Opio Melanocortin,Pro Opiocortin,Pro Opiomelanocortin
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone

Related Publications

A Kjaer, and P J Larsen, and U Knigge, and J Warberg
December 2003, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
A Kjaer, and P J Larsen, and U Knigge, and J Warberg
December 2000, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
A Kjaer, and P J Larsen, and U Knigge, and J Warberg
August 1994, Respiratory medicine,
A Kjaer, and P J Larsen, and U Knigge, and J Warberg
November 1983, Clinics in endocrinology and metabolism,
A Kjaer, and P J Larsen, and U Knigge, and J Warberg
November 2000, American journal of obstetrics and gynecology,
A Kjaer, and P J Larsen, and U Knigge, and J Warberg
February 1989, Endocrine reviews,
A Kjaer, and P J Larsen, and U Knigge, and J Warberg
March 1970, British medical journal,
A Kjaer, and P J Larsen, and U Knigge, and J Warberg
August 1992, Metabolism: clinical and experimental,
A Kjaer, and P J Larsen, and U Knigge, and J Warberg
August 2023, Nature,
A Kjaer, and P J Larsen, and U Knigge, and J Warberg
January 2009, Neuroimmunomodulation,
Copied contents to your clipboard!