Microglial response to degeneration of serotonergic axon terminals. 1994

M A Wilson, and M E Molliver
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

The neurotoxic drug p-chloramphetamine (PCA) causes widespread degeneration of fine, unmyelinated serotonergic (5-HT) axons in the forebrain. PCA toxicity is selective for 5-HT axon terminals; preterminal axons and cell bodies are spared. Degeneration is followed by slowly progressive axonal sprouting and partial reinnervation. PCA is injected subcutaneously; this route of administration avoids mechanical disruption of the blood brain barrier. The present study analyzed the response of microglia and astrocytes in rat brain to selective ablation of 5-HT axons by PCA. Several microglial markers were analyzed with immunocytochemical methods. An increase in the number of microglial processes and in immunoreactive staining was observed with antibodies directed against CR-3, MHC-I, CD4, and rat LCA. The microglial response was maximal 3 weeks after PCA treatment, became less evident 6 weeks after treatment, and by 9 weeks no difference was observed between treated and control rats. No change was detected in MHC-II or the macrophage marker ED1, nor in expression of GFAP by astrocytes. Thus, degeneration of 5-HT axon terminals affects only a subset of the microglial markers examined; in comparison, retrograde reaction to facial nerve transection causes a robust increase in all of these markers and in GFAP. The microglial response to PCA-induced axon loss is slow in onset and small in magnitude. These findings indicate that CNS microglia are activated by degeneration of fine, unmyelinated 5-HT axon terminals; furthermore, sensitive microglial markers can detect a subtle axonal lesion that provokes no detectable increase in GFAP expression by astrocytes.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D010133 p-Chloroamphetamine Chlorinated analog of AMPHETAMINE. Potent neurotoxin that causes release and eventually depletion of serotonin in the CNS. It is used as a research tool. p-Chloramphetamine,para-Chloroamphetamine,LY-121860,Ly-123362,Parachloroamphetamine,LY 121860,LY121860,Ly 123362,Ly123362,p Chloramphetamine,p Chloroamphetamine,para Chloroamphetamine
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D005154 Facial Nerve The 7th cranial nerve. The facial nerve has two parts, the larger motor root which may be called the facial nerve proper, and the smaller intermediate or sensory root. Together they provide efferent innervation to the muscles of facial expression and to the lacrimal and SALIVARY GLANDS, and convey afferent information for TASTE from the anterior two-thirds of the TONGUE and for TOUCH from the EXTERNAL EAR. Cranial Nerve VII,Marginal Mandibular Branch,Marginal Mandibular Nerve,Seventh Cranial Nerve,Nerve VII,Nerve of Wrisberg,Nervus Facialis,Nervus Intermedius,Nervus Intermedius of Wrisberg,Cranial Nerve VIIs,Cranial Nerve, Seventh,Facial Nerves,Mandibular Nerve, Marginal,Mandibular Nerves, Marginal,Marginal Mandibular Nerves,Nerve VIIs,Nerve, Facial,Nerve, Marginal Mandibular,Nerve, Seventh Cranial,Nerves, Marginal Mandibular,Nervus Faciali,Seventh Cranial Nerves,Wrisberg Nerve,Wrisberg Nervus Intermedius
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

M A Wilson, and M E Molliver
August 2018, Cerebral cortex (New York, N.Y. : 1991),
M A Wilson, and M E Molliver
February 2010, The Journal of comparative neurology,
M A Wilson, and M E Molliver
October 1996, Journal of neurobiology,
M A Wilson, and M E Molliver
May 1992, Brain research. Developmental brain research,
Copied contents to your clipboard!