Alterations of hepatic drug metabolism in mice following infection with the murine retrovirus LP-BM5. 1994

S Ansher, and W Thompson, and R Watson
Laboratory of Bacterial Toxins, Food and Drug Administration, Bethesda, MD 20892.

Infection of mice with the murine retrovirus mixture LP-BM5 caused a retroviral infection with many similarities to human HIV infection. We have reported alterations in hepatic drug metabolism which progressed during the course of this infection. Hexobarbital-induced sleep time increased 1.5-2.2-fold above uninfected controls after 10 to 19 weeks post infection. Inhibition of spectral cytochrome P-450 levels by 25 to 30% was observed between 15 and 17 weeks post-infection, and there were changes in specific microsomal enzyme activities. The microsomal cocaine demethylase activity was reduced by 40%, whereas cytosolic enzyme activities were increased by 1.5-2.0-fold. These alterations may contribute to the altered metabolism of drugs of abuse reported in MAIDS mice. The mechanism for these alterations is not known, although the effects correspond temporally to reported infiltration of the liver with immunoblasts and plasma cells. This suggests a role for the immune system or for mediators released by cells of the immune system which could account for these observations. An understanding of the effects of infection on drug metabolism is important because of their impact on the efficacy and safety of drugs for use in AIDS patients).

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005260 Female Females
D006591 Hexobarbital A barbiturate that is effective as a hypnotic and sedative. Evipan,Hexenal,Hexobarbitone,Sodium Hexobarbital,Hexobarbital, Sodium
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S Ansher, and W Thompson, and R Watson
October 1991, The Journal of infectious diseases,
S Ansher, and W Thompson, and R Watson
September 1995, Immunology letters,
S Ansher, and W Thompson, and R Watson
July 1996, Journal of virological methods,
S Ansher, and W Thompson, and R Watson
January 1995, International immunology,
S Ansher, and W Thompson, and R Watson
January 2001, Viral immunology,
Copied contents to your clipboard!