Penicillin-resistant mechanisms in Pseudomonas aeruginosa: binding of penicillin to Pseudomonas aeruginosa KM 338. 1975

H Suginaka, and A Ichikawa, and S Kotani

A comparison of the binding of radioactive penicillin G to whole cells and the membrane fraction derived from Pseudomonas aeruginosa KM 338 was made. This organism has intrinsic resistance to penicillin. The binding to the membrane fraction which catalyzed peptidoglycan synthesis followed saturation type kinetics and saturation was achieved at approximately 2 nmol of penicillin G per ml, whereas binding to the whole cells was entirely of the nonsaturation type. The binding of carbenicillin to the membrane fraction was determined by competition between radioactive penicillin G and unlabeled carbenicillin for the binding sites. It was bound at the same sites in almost the same manner. When whole cells were pretreated with high concentration of unlabeled penicillin G or carbenicillin, the subsequent binding of radioactive penicillin G to the membrane fraction from carbenicillin-treated cells was entirely nonspecific, but with penicillin G-pretreated cells it was still specific. There was apparently specific binding of radioactive penicillin G to ethylenediaminetetraacetate-treated cells. P. aeruginosa KM 338 had an extremely low activity of beta-lactamase compared with other enzyme-producing organisms. This enzyme from P. aeruginosa KM 338 was of the cephalosporinase type. These data indicate that penicillin resistance of P. aeruginosa KM 338 may be a consequence of the development of a permeability barrier which prevents the antibiotic from reaching its sites of action in the cytoplasmic membrane.

UI MeSH Term Description Entries
D010400 Penicillin G A penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It has also been used as an experimental convulsant because of its actions on GAMMA-AMINOBUTYRIC ACID mediated synaptic transmission. Benzylpenicillin,Benpen,Benzylpenicillin Potassium,Coliriocilina,Crystapen,Or-pen,Parcillin,Pekamin,Pengesod,Penibiot,Penicilina G Llorente,Penicillin G Jenapharm,Penicillin G Potassium,Penicillin G Sodium,Penicillin Grünenthal,Penilevel,Peniroger,Pfizerpen,Sodiopen,Sodipen,Sodium Benzylpenicillin,Sodium Penicillin,Unicilina,Ursopen,Van-Pen-G
D010403 Penicillin Resistance Nonsusceptibility of an organism to the action of penicillins. Penicillin Resistances,Resistance, Penicillin,Resistances, Penicillin
D010406 Penicillins A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065) Antibiotics, Penicillin,Penicillin,Penicillin Antibiotics
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea

Related Publications

H Suginaka, and A Ichikawa, and S Kotani
June 1975, [Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society,
H Suginaka, and A Ichikawa, and S Kotani
March 2008, Microbial drug resistance (Larchmont, N.Y.),
H Suginaka, and A Ichikawa, and S Kotani
September 2013, Journal of medical microbiology,
H Suginaka, and A Ichikawa, and S Kotani
May 1981, Antimicrobial agents and chemotherapy,
H Suginaka, and A Ichikawa, and S Kotani
January 2018, Journal of infection in developing countries,
H Suginaka, and A Ichikawa, and S Kotani
May 1997, Antimicrobial agents and chemotherapy,
H Suginaka, and A Ichikawa, and S Kotani
January 2017, Antimicrobial agents and chemotherapy,
H Suginaka, and A Ichikawa, and S Kotani
October 1979, European journal of biochemistry,
Copied contents to your clipboard!