Characterization of cytosolic phospholipases C from porcine aortic endothelial cells. 1994

Y Fu, and J X Cheng, and S L Hong
Division of Cardiology, New England Deaconess Hospital, Boston, Massachusetts 02215.

Phospholipases C (PLCs) are ubiquitous enzymes which play key roles in the response of cells to extracellular agonists. Endothelial cells are involved in myriad normal and pathophysiologic functions. Although it is known that agonists activate PLCs in endothelial cells, second messengers form, and cellular responses ensue, more knowledge is needed about the specific types of PLCs in these cells. To this end, cytosolic PLCs from porcine aortic endothelial cells were partially purified by ammonium sulfate fractionation and column chromatography on DEAE-Sepharose CL-6B and heparin-agarose. Three PLC isozymes immunologically similar to bovine brain PLC-beta, PLC-gamma, and PLC-delta were identified. The relative levels of PLC activities in the cytosol were: PLC-beta, 50%; PLC-gamma, 44%; PLC-delta, 6%. The level of PLC-beta activity in porcine endothelial cells appeared higher than the levels reported for several established cell lines, suggesting that this enzyme may play a specific role in endothelial cell function. Elution profiles of PLC activity with phosphatidylinositol 4,5-bisphosphate (Ptdlns(4,5)P2) as substrate were similar to those with phosphatidylinositol (Ptdlns) as substrate, indicating that cytosolic PLCs hydrolyze both Ptdlns and Ptdlns(4,5)P2 and no Ptdlns(4,5)P2-specific PLC was present in the cytosol. The catalytic properties of the partially purified PLC isozymes from porcine endothelial cells were similar to their counterparts from bovine brain. These include the dependence of hydrolysis of Ptdlns on Ca2+, the optimal Ca2+ concentrations for the hydrolysis of Ptdlns and Ptdlns(4,5)P2, the pH optima, and the stimulatory effects of deoxycholate.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002847 Chromatography, Agarose A method of gel filtration chromatography using agarose, the non-ionic component of agar, for the separation of compounds with molecular weights up to several million. Chromatography, Sepharose,Agarose Chromatography,Sepharose Chromatography,Agarose Chromatographies,Chromatographies, Agarose,Chromatographies, Sepharose,Sepharose Chromatographies
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer

Related Publications

Y Fu, and J X Cheng, and S L Hong
June 1982, The Journal of biological chemistry,
Y Fu, and J X Cheng, and S L Hong
August 1999, The Journal of pharmacy and pharmacology,
Y Fu, and J X Cheng, and S L Hong
December 1995, Transplantation,
Y Fu, and J X Cheng, and S L Hong
December 1988, The Journal of clinical investigation,
Y Fu, and J X Cheng, and S L Hong
May 1993, British journal of pharmacology,
Y Fu, and J X Cheng, and S L Hong
June 2022, International journal of molecular sciences,
Y Fu, and J X Cheng, and S L Hong
September 1988, Journal of cellular physiology,
Copied contents to your clipboard!