Characterization of the proteins of the intestinal Na(+)-K(+)-2Cl- cotransporter. 1994

W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
Department of Physiology and Biophysics, University of Illinois at Chicago 60612.

Absorptive intestinal epithelia, such as that of the winter flounder, absorb salt via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport mechanism on the brush-border membrane (BBM). The present study demonstrates the first molecular characterization of the intestinal Na(+)-K(+)-2Cl- cotransporter and its unique regulation. The photoaffinity bumetanide analogue, 4-[3H]benzoyl-5-sulfamoyl-3- (3-thenyloxy)benzoic acid, specifically labeled three groups of proteins in flounder intestinal microsomal membranes (MM): a approximately 180-kDa peptide, prominently labeled, and diffuse bands at approximately 110-70 and 50 kDa, less intensely labeled. Subcellular fractionation revealed a single prominently labeled protein of approximately 170 kDa in BBM but not in basolateral membranes (BLM) and little or no labeling of proteins of approximately 110-70 or 50 kDa. Polyclonal antiserum raised against the Ehrlich ascites cell cotransporter identified a 180-kDa peptide in MM and a 175-kDa peptide (pI approximately 5.4) in BBM but none in BLM or in the cytosol of flounder intestine. As predicted from the regulation of cotransport in this tissue, phosphorylation of this protein is increased by guanosine 3',5'-cyclic monophosphate (cGMP)-dependent but not by adenosine 3',5'-cyclic monophosphate-dependent protein kinase. In addition, phosphorylation of the protein is not increased by protein kinase C or Ca2+/calmodulin-dependent protein kinase but is increased by the phosphatase inhibitor calyculin A. Finally, calyculin A preserves the inhibitory effect of cGMP on ion transport, even in the absence of the nucleotide, suggesting that phosphorylation-dephosphorylation mechanisms are crucial in cotransporter regulation. Thus the flounder intestinal cotransporter is a approximately 175-kDa BBM protein that can be regulated by phosphorylation.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007477 Ions An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
D008387 Marine Toxins Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES. Marine Biotoxins,Phycotoxins
D010080 Oxazoles Five-membered heterocyclic ring structures containing an oxygen in the 1-position and a nitrogen in the 3-position, in distinction from ISOXAZOLES where they are at the 1,2 positions. Oxazole,1,3-Oxazolium-5-Oxides,Munchnones,1,3 Oxazolium 5 Oxides
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005432 Flounder Common name for two families of FLATFISHES belonging to the order Pleuronectiformes: left-eye flounders (Bothidae) and right-eye flounders (Pleuronectidae). The latter is more commonly used in research. Plaice,Platichthys,Pleuronectes,Pseudopleuronectes,Halibut,Pleuronectes platessa,Flounders
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling

Related Publications

W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
April 2002, American journal of physiology. Cell physiology,
W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
January 2006, Molecular and cellular biology,
W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
April 2012, Biology of the cell,
W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
August 1990, The American journal of physiology,
W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
March 2002, The Journal of biological chemistry,
W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
July 2016, Investigative ophthalmology & visual science,
W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
December 2005, Acta oto-laryngologica,
W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
February 2006, Nihon rinsho. Japanese journal of clinical medicine,
W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
October 1997, The American journal of physiology,
W Suvitayavat, and P B Dunham, and M Haas, and M C Rao
December 1999, The American journal of physiology,
Copied contents to your clipboard!