Response of embryonic rat hippocampal neurons in culture to neurotrophin-3, brain-derived neurotrophic factor and basic fibroblast growth factor. 1993

F Ohsawa, and H R Widmer, and B Knusel, and T L Denton, and F Hefti
Division of Neurogerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191.

Primary cultures of rat hippocampal cells have been used to evaluate trophic effects of neurotrophin-3, brain-derived neurotrophic factor, nerve growth factor, and basic fibroblast growth factor. There was little survival in cultures prepared from embryonic day 17 embryos and grown in defined medium without growth factors. Addition of basic fibroblast growth factor produced a massive increase in the number of neurons present in the cultures seven days after plating. This action reflected proliferation of neuronal precursor cells rather than increased survival of initially plated neurons. Brain-derived neurotrophic factor was ineffective under these conditions, whereas neurotrophin-3 produced a very small, but statistically significant increase in neuronal survival in the range of 20%. However, hippocampal neurons were responsive to brain-derived neurotrophic factor and neurotrophin-3 as demonstrated under culture conditions, resulting in survival in absence of the neurotrophins. Acute administration of brain-derived neurotrophic factor and neurotrophin-3 to hippocampal cultures grown at high density stimulated the hydrolysis of phosphatidylinositol, a response earlier shown to be mediated by tyrosine receptor kinase neurotrophin receptors. Furthermore, when such cultures were grown in presence of neurotrophin-3 rates of glutamate and GABA uptake were increased. In contrast to the findings obtained in cultures of embryonic day 17, cultures prepared from embryonic day 14 or 15 animals were viable in absence of exogenous growth factors. The specific neurotrophin receptor inhibitor, K-252b reduced survival in these cultures and this effect was partly overcome by exogenous neurotrophin-3. Our findings suggest that hippocampal neuron survival at early embryonic stages may involve paracrine neurotrophin mechanisms, whereas the survival of hippocampal neurons of embryonic day 17 is not markedly enhanced by brain-derived neurotrophic factor or neurotrophin-3. However, at this embryonic stage there is a functional response to both neurotrophins as made evident by the activation of tyrosine kinase receptor-linked signal transduction mechanisms and by the stimulation of transmitter-specific differentiation.

UI MeSH Term Description Entries
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016222 Fibroblast Growth Factor 2 A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F Ohsawa, and H R Widmer, and B Knusel, and T L Denton, and F Hefti
December 1997, Japanese journal of pharmacology,
F Ohsawa, and H R Widmer, and B Knusel, and T L Denton, and F Hefti
January 1992, The European journal of neuroscience,
F Ohsawa, and H R Widmer, and B Knusel, and T L Denton, and F Hefti
November 1997, Journal of neuroscience research,
F Ohsawa, and H R Widmer, and B Knusel, and T L Denton, and F Hefti
April 1994, The Journal of comparative neurology,
F Ohsawa, and H R Widmer, and B Knusel, and T L Denton, and F Hefti
September 2003, Brain research,
F Ohsawa, and H R Widmer, and B Knusel, and T L Denton, and F Hefti
December 1992, Journal of neurochemistry,
F Ohsawa, and H R Widmer, and B Knusel, and T L Denton, and F Hefti
January 1994, The Journal of biological chemistry,
F Ohsawa, and H R Widmer, and B Knusel, and T L Denton, and F Hefti
March 1996, Experimental neurology,
F Ohsawa, and H R Widmer, and B Knusel, and T L Denton, and F Hefti
December 1994, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Copied contents to your clipboard!