The UAS of the yeast GAPDH promoter consists of multiple general functional elements including RAP1 and GRF2 binding sites. 1994

S Yagi, and K Yagi, and J Fukuoka, and M Suzuki
Corporate Research & Development Laboratory, Saitama, Japan.

The upstream activating sequence (UAS) of TDH3, one of three genes encoding glyceraldehyde phosphate dehydrogenase in Saccharomyces cerevisiae, was characterized by using a series of external and internal deletion mutants of the TDH3 upstream region. The levels of activation by these deletions of transcription mediated through either the segment of TDH3 promoter or the segment of ADH1 (alcohol dehydrogenase 1 gene) promoter were quantitatively examined and the region between -583 and -447 was found to be required for full transcriptional activation with either promoter segment. It has been demonstrated that the protein binding site involved in the formation of two DNA-protein complexes is identical with the consensus RAP1 binding sequence by methylation interference assay. Surprisingly, the UAS fragment composed of the 22-mer sequence containing exclusively a RAP1 binding sequence showed full activation, suggesting that the RAP1-dependent transcriptional activation is a primary positive control in the TDH3 gene expression. In addition, a pair of inverted repeat sequences homologous to the binding sequence for GRF2, another yeast trans-acting factor, and directly repeated sequences containing a CATCC motif were also found upstream and downstream, respectively, of the RAP1 binding site. Deletion analysis suggested that these elements could also function as regulatory elements for transcription.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S Yagi, and K Yagi, and J Fukuoka, and M Suzuki
September 1989, Nucleic acids research,
S Yagi, and K Yagi, and J Fukuoka, and M Suzuki
September 1988, Nucleic acids research,
S Yagi, and K Yagi, and J Fukuoka, and M Suzuki
August 1989, Molecular and cellular biology,
S Yagi, and K Yagi, and J Fukuoka, and M Suzuki
October 2003, The Journal of biological chemistry,
S Yagi, and K Yagi, and J Fukuoka, and M Suzuki
October 1990, Science (New York, N.Y.),
S Yagi, and K Yagi, and J Fukuoka, and M Suzuki
March 2015, Biophysical chemistry,
Copied contents to your clipboard!