[Glycolytic enzymes in human erythrocytes: association of glyceraldehyde-3-phosphate dehydrogenase with 3-phosphoglycerate kinase]. 1994

L I Ashmarina, and V I Muronets, and N K Nagradova

The ability of glyceraldehyde-3-phosphate dehydrogenase (GAPD) to associate with 3-phosphoglycerate kinase (3-PGK) in human erythrocytes has been studied. It was found that a stable GAPD-3-PGK complex can be isolated from human erythrocyte hemolysates using immobilized monoclonal antibodies that are specific for GAPD. The complex does not dissociate at high ionic strength (up to 0.3 M NaCl) but is decomposed in the presence of specific ligands interacting with GAPD and 3-PGK, e.g., 1,3-diphosphoglycerate. The interaction between GAPD and 3-PGK isolated from human erythrocytes was investigated. To assess the binding parameters, immobilized GAPD and soluble 3-PGK from erythrocytes were used. About 2.3 moles of monomeric 3-PGK (Kd = 2.4 microM) were bound per mole of the immobilized tetramer of GAPD. Under these conditions the rabbit muscle enzymes form more weak (Kd = 3.8 microM), whereas the yeast enzyme--more stable complexes (Kd = 1.5 microM). No such complexes were detected when the enzyme pairs were isolated from phylogenetically distant sources, such as yeast and mammalian tissues. The species specificity of binding of the two enzymes and possible causes of formation of such stable complexes in erythrocyte lysate are discussed.

UI MeSH Term Description Entries
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010735 Phosphoglycerate Kinase An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3. Kinase, Phosphoglycerate
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

L I Ashmarina, and V I Muronets, and N K Nagradova
June 1993, Biochimica et biophysica acta,
L I Ashmarina, and V I Muronets, and N K Nagradova
October 1984, Biochemistry international,
L I Ashmarina, and V I Muronets, and N K Nagradova
January 1995, European journal of biochemistry,
L I Ashmarina, and V I Muronets, and N K Nagradova
April 1999, Indian journal of biochemistry & biophysics,
L I Ashmarina, and V I Muronets, and N K Nagradova
November 1967, The British journal of dermatology,
L I Ashmarina, and V I Muronets, and N K Nagradova
December 1968, Bollettino della Societa italiana di biologia sperimentale,
Copied contents to your clipboard!