[Energy characteristics of an ATP-hydrolase reaction catalyzed by solubilized Ca2+,Mg2+-ATPase from smooth muscle cell membrane]. 1994

S A Kosterin, and N N Slinchenko, and G L Gergalova

The effects of temperature, dielectric permeability and ionic strength on the activity of purified Ca2+, Mg(2+)-ATPase solubilized from myometrial sarcolemma have been studied under saturation of the enzyme with Ca2+, Mg2+ and ATP. The values of activation energy calculated from Arrhenius plots for both ATP hydrolase reactions catalysed by solubilized and reconstituted into azolectin liposomes Ca2+, Mg(2+)-ATPase and Mg2+, ATP-dependent Ca2+ transport by the reconstituted enzyme were 56.4 +/- 1.5, 68.0 +/- 5.1 and 63.1 +/- 2.9 kJ/mol, respectively. Analysis of experimental data in terms of the Laidler-Scatchard and Bronsted-Bjerrum theories revealed that the separation of the reaction products--the chelate MgADP complex--from the active site of the enzyme bearing one unity positive charge is the limiting step of the Ca2+, Mg(2+)-dependent enzymatic ATP-hydrolysis under conditions of substrate saturation. The values of the electrostatic components of the free energy, enthalpy and entropy of activation of the ATP hydrolase reaction were 46.6 +/- 0.3 kJ/mol, -(20.5 +/- 0.4) kJ/mol and -(214.2 +/- 4.3) J/(mol.degrees K), respectively. The nonelectrostatic component of activation enthalpy was 76.9 kJ/mol. The results obtained suggest that changes in polarity of the incubation medium markedly affect the activity of transport Ca2+, Mg(2+)-ATPase solubilized from smooth muscle cell plasma membranes and that the electrostatic interactions between the enzyme active site and specific reagents (MgADP, in particular) significantly contribute to the energetics of the ATP hydrolase reaction.

UI MeSH Term Description Entries
D009215 Myometrium The smooth muscle coat of the uterus, which forms the main mass of the organ. Uterine Muscle,Muscle, Uterine,Muscles, Uterine,Uterine Muscles
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004560 Electricity The physical effects involving the presence of electric charges at rest and in motion.
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005260 Female Females
D006867 Hydrolases Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3. Hydrolase

Related Publications

S A Kosterin, and N N Slinchenko, and G L Gergalova
September 1995, Biokhimiia (Moscow, Russia),
S A Kosterin, and N N Slinchenko, and G L Gergalova
January 1999, Ukrains'kyi biokhimichnyi zhurnal (1999 ),
S A Kosterin, and N N Slinchenko, and G L Gergalova
January 1985, Biochimica et biophysica acta,
S A Kosterin, and N N Slinchenko, and G L Gergalova
January 1988, Progress in biophysics and molecular biology,
S A Kosterin, and N N Slinchenko, and G L Gergalova
July 1981, FEBS letters,
S A Kosterin, and N N Slinchenko, and G L Gergalova
January 1989, Advances in experimental medicine and biology,
S A Kosterin, and N N Slinchenko, and G L Gergalova
January 1999, Ukrains'kyi biokhimichnyi zhurnal (1999 ),
S A Kosterin, and N N Slinchenko, and G L Gergalova
January 1984, Current topics in cellular regulation,
Copied contents to your clipboard!