| D009119 |
Muscle Contraction |
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. |
Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions |
|
| D009124 |
Muscle Proteins |
The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. |
Muscle Protein,Protein, Muscle,Proteins, Muscle |
|
| D009132 |
Muscles |
Contractile tissue that produces movement in animals. |
Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle |
|
| D002118 |
Calcium |
A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. |
Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation |
|
| D005029 |
Ethylenediamines |
Derivatives of ethylenediamine (the structural formula NH2CH2CH2NH2). |
|
|
| D000085 |
Acetates |
Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. |
Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D015220 |
Calcium Channels |
Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. |
Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels |
|
| D019837 |
Ryanodine Receptor Calcium Release Channel |
A tetrameric calcium release channel in the SARCOPLASMIC RETICULUM membrane of SMOOTH MUSCLE CELLS, acting oppositely to SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. It is important in skeletal and cardiac excitation-contraction coupling and studied by using RYANODINE. Abnormalities are implicated in CARDIAC ARRHYTHMIAS and MUSCULAR DISEASES. |
Calcium-Ryanodine Receptor Complex,RyR1,Ryanodine Receptor 1,Ryanodine Receptor 2,Ryanodine Receptor 3,Ryanodine Receptors,Ca Release Channel-Ryanodine Receptor,Receptor, Ryanodine,RyR2,RyR3,Ryanodine Receptor,Ca Release Channel Ryanodine Receptor,Calcium Ryanodine Receptor Complex,Complex, Calcium-Ryanodine Receptor,Receptor 1, Ryanodine,Receptor 2, Ryanodine,Receptor 3, Ryanodine,Receptor Complex, Calcium-Ryanodine,Receptors, Ryanodine |
|