Human intestinal sucrase-isomaltase. Identification of free sucrase and isomaltase and cleavage of the hybrid into active distinct subunits. 1975

K A Conklin, and K M Yamashiro, and G M Gray

Sucrase-isomaltase complex and its functional subunits have been identified in homogenates of human small intestinal mucosa by use of Sephadex G-200 (superfine) chromatography aided by affinity of the isomaltase moiety for the dextran gel. The isomaltase subunit binds strongly to the gel at 4 degrees, and is eluted only after 2 column volumes; earlier recovery as a sharp peak can be achieved by raising column temperature to 37 degrees after elution of other proteins. Bio-Gel P-300 chromatography, density gradient, and equilibrium centrifugation demonstrated that the sucrase subunit (Stokes radius = 45 A, frictional ratio = 1.32, s20,w = 6.9, MW = 130,000) and the isomaltase subunit (Stokes radius = 45 A, frictional ratio = 1.30, s20,w = 6.6, MW = 120,000) are similar but unequal in size. The sucrase-isomaltase complex (Stokes radius = 70 A, frictional ratio = 1.61, s20,w = 9.8, MW = 280,000), appears to be an elongated hybrid molecule that is less symmetrical than either of itt subunits. Apparent Km and pH activity curves were indistinguishable for each enzyme whether present in the hybrid or in the free state. The sucrase-isomaltase complex, accounting for approximately 90 percent of native intestinal sucrase and isomaltase activities, was isolated and cleaved by 0.01 M beta-mercaptoethanol/6 M urea treatment into active sucrase and isomaltase subunits having biochemical characteristics identical with those of the free native moieties. Sodium dodecyl sulfate acrylamide gell electrophoresis of the complex also produced subunits having molecular weights very close to those for the active free sucrase and isomaltase moieties, indicating that each alpha-glucosidase appears to consist of a single polypeptide chain. Immunization of rabbits with pure sucrase-isomaltase complex yielded a monospecific precipitating antibody that reacted with the hybrid and the sucrase subunit, but had minimal affinity for the isomaltase subunit, providing further evidence that the sucrase-isomaltase molecule is a hybrid consisting of two distinct alpha-glucosidases.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008320 Maltose A dextrodisaccharide from malt and starch. It is used as a sweetening agent and fermentable intermediate in brewing. (Grant & Hackh's Chemical Dictionary, 5th ed)
D008623 Mercaptoethanol A water-soluble thiol derived from hydrogen sulfide and ethanol. It is used as a reducing agent for disulfide bonds and to protect sulfhydryl groups from oxidation. 2-ME,2-Mercaptoethanol,2 Mercaptoethanol
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography

Related Publications

K A Conklin, and K M Yamashiro, and G M Gray
April 1975, European journal of biochemistry,
K A Conklin, and K M Yamashiro, and G M Gray
February 1973, European journal of biochemistry,
K A Conklin, and K M Yamashiro, and G M Gray
August 1977, Biochimica et biophysica acta,
K A Conklin, and K M Yamashiro, and G M Gray
October 1975, The New England journal of medicine,
K A Conklin, and K M Yamashiro, and G M Gray
May 1995, Biochemical Society transactions,
K A Conklin, and K M Yamashiro, and G M Gray
September 1984, European journal of biochemistry,
K A Conklin, and K M Yamashiro, and G M Gray
October 1979, Proceedings of the National Academy of Sciences of the United States of America,
K A Conklin, and K M Yamashiro, and G M Gray
September 1973, FEBS letters,
Copied contents to your clipboard!