A second terminal oxidase in Sulfolobus acidocaldarius. 1994

M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
European Molecular Biology Laboratory, Heidelberg, Germany.

We previously found that the soxABCD operon encodes a quinol oxidase complex in Sulfolobus acidocaldarius and this enzyme was purified and characterized. In this study, we have used a cloning procedure based on the conservation of oxidase sequences and the polymerase chain reaction to isolate a new gene (soxM) encoding a subunit of another terminal oxidase. This terminal oxidase is a fusion between two central components of cytochrome oxidases, subunits I and III. soxM forms a transcriptional unit which is expressed under heterotrophic growth conditions. The corresponding protein was detected by direct protein sequencing in a preparation enriched with a cytochrome absorbing light at 562 nm. This preparation contains a terminal oxidase which is able to oxidize the artificial substrate N,N,N',N'-tetramethyl-p-phenylenediamine. This preparation also contains SoxC, a protein homologous to the mitochondrial cytochrome b, and a Rieske iron-sulphur center. We suggest that SoxM is the core component of a second terminal oxidase complex and that this complex may share a subunit (SoxC) with the SoxABCD complex.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings

Related Publications

M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
December 1994, The Journal of biological chemistry,
M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
December 1989, Biochemical and biophysical research communications,
M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
July 1990, European journal of biochemistry,
M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
September 1994, European journal of biochemistry,
M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
November 1992, European journal of biochemistry,
M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
February 1996, Biotechnology and applied biochemistry,
M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
July 1994, Molecular microbiology,
M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
January 1982, The EMBO journal,
M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
October 1996, Biochemistry,
M Lübben, and S Arnaud, and J Castresana, and A Warne, and S P Albracht, and M Saraste
January 2001, Methods in enzymology,
Copied contents to your clipboard!