Properties and structure of spermidine acetyltransferase in Escherichia coli. 1994

J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
Faculty of Pharmaceutical Sciences, Chiba University, Japan.

Spermidine acetyltransferase (SAT) from Escherichia coli was purified about 40,000-fold. The molecular mass of native SAT was 95 kDa, and it consisted of four identical subunits. The products formed from the reaction of acetyl-CoA with spermidine by SAT were N1- and N8-acetylspermidine. The Km values for acetyl-CoA, spermidine, and spermine were 2 microM, 1.29 mM, and 220 microM, respectively. The enzymatic activity increased by 2.5-3.5-fold under the condition of poor nutrition but not in response to cold shock or high pH. By using synthetic oliogonucleotides deduced from amino acid sequences of the peptides in SAT, a polymerase chain reaction product with a length of 250 nucleotides was obtained. Using this polymerase chain reaction product, the gene encoding SAT (speG) was cloned and mapped at 35.6 min in the E. coli chromosome. E. coli cells transformed with the cloned speG gene increased SAT activity by 8-40-fold. The gene encoded a 186-amino acid protein, but SAT consisted of 185 amino acids because the initiator methionine was liberated from the protein. Thus, the predicted molecular mass was 21,756 Da. Significant similarity to aminoglycoside acetyltransferase and peptide N-acetyltransferase was observed in the amino acid sequence 87-141, and some similarity with spermidine-preferential binding protein (potD protein) in the spermidine-preferential uptake system was observed in the amino acid sequence 122-141. The results suggest that the active center of SAT may be located in the COOH-terminal portion.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
June 1982, Biochemical and biophysical research communications,
J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
October 1996, The Biochemical journal,
J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
October 2000, Journal of bacteriology,
J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
February 1995, Biochemistry,
J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
August 2013, Acta crystallographica. Section F, Structural biology and crystallization communications,
J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
April 1973, The Journal of biological chemistry,
J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
September 2004, The Journal of biological chemistry,
J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
June 2019, Acta crystallographica. Section D, Structural biology,
J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
February 2001, Biochemistry,
J Fukuchi, and K Kashiwagi, and K Takio, and K Igarashi
January 1983, Methods in enzymology,
Copied contents to your clipboard!