Ligand binding characterization and molecular analysis of distinct epidermal growth factor-urogastrone receptors in cultured smooth muscle and epithelial cells from guinea pig intestine. 1994

S G Yang, and S Ahmad, and N C Wong, and M D Hollenberg
Department of Pharmacology and Therapeutics, University of Calgary, Faculty of Medicine, Alberta, Canada.

In parallel, we measured the receptor binding affinities for epidermal growth factor-urogastrone (EGF-URO) and transforming growth factor-alpha (TGF-alpha) in cultured smooth muscle (GCM) and epithelial (GPC) cells derived from guinea pig intestine. The relative order of binding affinities in the GCM cells was TGF-alpha > EGF-URO, in keeping with the relative order of biological potencies of these polypeptides in a guinea pig gastric circular muscle contractile bioassay. These data established by ligand binding criteria the presence of a TGF-alpha-preferring receptor in the guinea pig. In contrast, there was a reversed order of binding affinities (EGF-URO > TGF-alpha) for the polypeptides in GPC cells, in accord with an identical order of bioassay potencies previously observed in a guinea pig gastric longitudinal muscle contractile bioassay. Using a reverse transcription-polymerase chain reaction approach, we also cloned and sequenced putative EGF-URO receptor ligand binding domain III from each cell type. Although the binding specificity for TGF-alpha and EGF-URO differed in the GCM and GPC cells, the amino acid sequences of receptor domain III were identical in the two cell types. We conclude that the previously measured differences in biological potencies of EGF-URO and TGF-alpha in the contractile bioassay preparations are due to the distinct receptor binding affinities of EGF-URO and TGF-alpha that can be detected in different tissues. However, our data document that the distinct relative binding affinities for EGF-URO and TGF-alpha that can be observed in different cell types from the same species cannot be accounted for solely by the sequence of putative receptor ligand binding domain III.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S G Yang, and S Ahmad, and N C Wong, and M D Hollenberg
June 1991, The American journal of physiology,
S G Yang, and S Ahmad, and N C Wong, and M D Hollenberg
October 1988, Cell and tissue research,
S G Yang, and S Ahmad, and N C Wong, and M D Hollenberg
May 1988, The Journal of pharmacology and experimental therapeutics,
S G Yang, and S Ahmad, and N C Wong, and M D Hollenberg
April 1986, Endocrinologia japonica,
S G Yang, and S Ahmad, and N C Wong, and M D Hollenberg
August 1992, Journal of cellular physiology,
S G Yang, and S Ahmad, and N C Wong, and M D Hollenberg
October 1988, Canadian journal of physiology and pharmacology,
S G Yang, and S Ahmad, and N C Wong, and M D Hollenberg
October 1977, British journal of pharmacology,
S G Yang, and S Ahmad, and N C Wong, and M D Hollenberg
March 1992, The American journal of physiology,
S G Yang, and S Ahmad, and N C Wong, and M D Hollenberg
August 1979, Journal of cellular physiology,
Copied contents to your clipboard!