Erythroid-specific processing of human beta spectrin I pre-mRNA. 1994

Z L Chu, and A Wickrema, and S B Krantz, and J C Winkelmann
Department of Internal Medicine, University of Cincinnati College of Medicine, OH 45267-0508.

Erythroid cells express a unique form of beta spectrin I as a result of tissue-specific alternative pre-mRNA processing. Nonerythroid cells that express the beta spectrin I gene include four additional exons at the 3' end of the mature transcript, leading to elongation of the carboxyl terminus of the protein. The nonerythroid beta spectrin I isoform is not present in the red blood cell membrane skeleton; the erythroid isoform is not detected in other cell types. Therefore, developing erythroid cells acquire this tissue-specific pre-mRNA processing activity during differentiation. In the present study, we investigated the developmental timing of erythroid-specific pre-mRNA processing in human erythroid precursors. Partially purified human peripheral blood burst forming uniterythroid (BFU-E) cells were grown in culture for 5 to 12 days. beta Spectrin I mRNA transcripts were analyzed at different time points by S1 nuclease mapping. The processing of beta spectrin I transcripts was found to be exclusively erythroid from day 5 onward, indicating that erythroid-specific processing is not linked temporally to assembly of the mature erythroid membrane skeleton. Human erythroleukemia (HEL) cells had both erythroid and nonerythroid transcripts, indicating that both processing patterns can coexist. Induction of erythroid differentiation in HEL cells using hemin resulted in a partial switch toward the erythroid processing pattern of beta spectrin I transcripts. Using a genomic S1 probe that spans the erythroid polyadenylation signal, we found that a substantial portion of the transcripts detected by the erythroid cDNA S1 probe (in both cultured BFU-E and HEL cells) is incompletely processed pre-mRNA precursors. Poly(A) RNA selection before S1 analysis showed that the unprocessed transcripts are not polyadenylated. We conclude that (1) erythroid-specific pre-mRNA processing activity is present early in erythroid differentiation; (2) beta spectrin I transcripts that are unprocessed at the 3' end accumulate, awaiting either erythroid or nonerythroid processing pathways, from which observation we infer that the regulated alternative pathways are both inefficient; and (3) HEL cells offer a human cell culture model in which to study the balance between the two pre-mRNA processing pathways. We speculate that erythroid cells evolved this tissue-specific pre-mRNA processing machinery for other erythroid genes in addition to beta spectrin I.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006427 Hemin Chloro(7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,18-dipropanoato(4-)-N(21),N(22),N(23),N(24)) ferrate(2-) dihydrogen. Ferriprotoporphyrin,Hematin,Alkaline Hematin D-575,Chlorohemin,Ferrihaem,Ferriheme Chloride,Ferriprotoporphyrin IX,Ferriprotoporphyrin IX Chloride,Panhematin,Protohemin,Protohemin IX,Alkaline Hematin D 575,Chloride, Ferriheme,Chloride, Ferriprotoporphyrin IX,Hematin D-575, Alkaline
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013049 Spectrin A high molecular weight (220-250 kDa) water-soluble protein which can be extracted from erythrocyte ghosts in low ionic strength buffers. The protein contains no lipids or carbohydrates, is the predominant species of peripheral erythrocyte membrane proteins, and exists as a fibrous coating on the inner, cytoplasmic surface of the membrane. alpha-Spectrin,beta-Spectrin,alpha Spectrin,beta Spectrin
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

Z L Chu, and A Wickrema, and S B Krantz, and J C Winkelmann
March 1995, Human genetics,
Z L Chu, and A Wickrema, and S B Krantz, and J C Winkelmann
November 1994, Brain research,
Z L Chu, and A Wickrema, and S B Krantz, and J C Winkelmann
July 1990, The Journal of biological chemistry,
Z L Chu, and A Wickrema, and S B Krantz, and J C Winkelmann
October 1993, Genomics,
Z L Chu, and A Wickrema, and S B Krantz, and J C Winkelmann
January 1992, British journal of haematology,
Z L Chu, and A Wickrema, and S B Krantz, and J C Winkelmann
January 1977, Acta biologica et medica Germanica,
Z L Chu, and A Wickrema, and S B Krantz, and J C Winkelmann
December 2011, Cellular & molecular biology letters,
Z L Chu, and A Wickrema, and S B Krantz, and J C Winkelmann
November 1994, The Journal of cell biology,
Z L Chu, and A Wickrema, and S B Krantz, and J C Winkelmann
November 2007, Protein science : a publication of the Protein Society,
Copied contents to your clipboard!