Novel modulators of skeletal muscle FKBP12/calcium channel complex from Ianthella basta. Role of FKBP12 in channel gating. 1994

M M Mack, and T F Molinski, and E D Buck, and I N Pessah
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis 95616.

Macrocyclic natural products derived from bromotyrosine isolated from the sponge Ianthella basta are shown to selectively modulate the skeletal isoform of the ryanodine-sensitive sarcoplasmic reticulum calcium channel by a novel mechanism involving the FKBP12/RyR-1 complex. Bastadins 5, 7, and the newly identified isomer of bastadin 5, bastadin 19, show marked differences in potency and efficacy toward activation of the binding of [3H]ryanodine. In physiological salt, bastadin 5 (5 microM) increases the [3H]ryanodine binding capacity of SR membranes 5-fold, by stabilizing the high affinity conformation of RyR-1 for ryanodine without shifting the affinity of the activator site for Ca2+ or altering the response to caffeine or adenine nucleotides. Bastadin 5 decreases the inhibitory potency of Mg2+ 8-fold and high (> 100 microM) Ca2+ 5-fold. Bastadin 5 inhibits Ca2+ uptake into SR vesicles and enhances Ca(2+)-induced Ca2+ release 8-fold. Bastadin 5 increases single-channel open dwell time, tau 1 and tau 2, 65- and 92-fold, respectively, without changing unitary conductance for Cs+ (450 picosiemans) or open probability. Most significant is the finding that the unique actions of bastadin 5 on [3H]ryanodine binding and Ca2+ transport are antagonized by the immunosuppressant FK506. FK506 alone weakly enhances the binding of [3H]ryanodine, compared to bastadin 5. However, FK506 diminishes bastadin 5-induced changes in [3H]ryanodine binding and Ca2+ transport without altering the efficacy of adenine nucleotides. Unlike FK506, bastadin 5 does not directly promote the dissociation of FKBP12 from the RyR-1 membrane complex; however, it markedly enhances the release of FKBP12 induced by FK506. These results suggest that the bastadin 5 effector site is a novel modulatory domain on FKBP12. Bastadins represent a new class of compounds to gain insight into the functional interactions between FKBP12 and RyR-1.

UI MeSH Term Description Entries
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010647 Phenyl Ethers Ethers that are linked to a benzene ring structure. Diphenyl Oxide,Diphenyl Oxides,Diphenyl Ethers,Ethers, Diphenyl,Ethers, Phenyl,Oxide, Diphenyl,Oxides, Diphenyl
D011161 Porifera The phylum of sponges which are sessile, suspension-feeding, multicellular animals that utilize flagellated cells called choanocytes to circulate water. Most are hermaphroditic. They are probably an early evolutionary side branch that gave rise to no other group of animals. Except for about 150 freshwater species, sponges are marine animals. They are a source of ALKALOIDS; STEROLS; and other complex molecules useful in medicine and biological research. Demospongiae,Sponges (Zoology),Sponge (Zoology),Sponges,Poriferas,Sponge
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

M M Mack, and T F Molinski, and E D Buck, and I N Pessah
December 1996, Journal of natural products,
M M Mack, and T F Molinski, and E D Buck, and I N Pessah
September 1998, Annals of the New York Academy of Sciences,
M M Mack, and T F Molinski, and E D Buck, and I N Pessah
January 2013, Journal of natural products,
M M Mack, and T F Molinski, and E D Buck, and I N Pessah
May 1983, The Journal of physiology,
M M Mack, and T F Molinski, and E D Buck, and I N Pessah
March 2021, European journal of medicinal chemistry,
M M Mack, and T F Molinski, and E D Buck, and I N Pessah
May 2001, The Journal of biological chemistry,
M M Mack, and T F Molinski, and E D Buck, and I N Pessah
January 1990, Journal of natural products,
M M Mack, and T F Molinski, and E D Buck, and I N Pessah
September 2022, ISME communications,
M M Mack, and T F Molinski, and E D Buck, and I N Pessah
November 1983, The Journal of general physiology,
Copied contents to your clipboard!