Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. 1994

H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
Department of Medicine, Indiana University Medical Center, Indianapolis.

The purpose of this study was to examine whether insulin's effect to vasodilate skeletal muscle vasculature is mediated by endothelium-derived nitric oxide (EDNO). N-monomethyl-L-arginine (L-NMMA), a specific inhibitor of NO synthase, was administered directly into the femoral artery of normal subjects at a dose of 16 mg/min and leg blood flow (LBF) was measured during an infusion of saline (NS) or during a euglycemic hyperinsulinemic clamp (HIC) designed to approximately double LBF. In response to the intrafemoral artery infusion of L-NMMA, LBF decreased from 0.296 +/- 0.032 to 0.235 +/- 0.022 liters/min during NS and from 0.479 +/- 0.118 to 0.266 +/- 0.052 liters/min during HIC, P < 0.03. The proportion of NO-dependent LBF during NS and HIC was approximately 20% and approximately 40%, respectively, P < 0.003 (NS vs. HIC). To elucidate whether insulin increases EDNO synthesis/release or EDNO action, vasodilative responses to graded intrafemoral artery infusions of the endothelium-dependent vasodilator methacholine chloride (MCh) or the endothelium-independent vasodilator sodium nitroprusside (SNP) were studied in normal subjects during either NS or HIC. LBF increments in response to intrafemoral artery infusions of MCh but not SNP were augmented during HIC versus NS, P < 0.03. In summary, insulin-mediated vasodilation is EDNO dependent. Insulin vasodilation of skeletal muscle vasculature most likely occurs via increasing EDNO synthesis/release. Thus, insulin appears to be a novel modulator of the EDNO system.

UI MeSH Term Description Entries
D007261 Infusions, Intra-Arterial Regional infusion of drugs via an arterial catheter. Often a pump is used to impel the drug through the catheter. Used in therapy of cancer, upper gastrointestinal hemorrhage, infection, and peripheral vascular disease. Infusions, Regional Arterial,Infusions, Intra Arterial,Infusions, Intraarterial,Arterial Infusion, Intra,Arterial Infusion, Regional,Arterial Infusions, Intra,Arterial Infusions, Regional,Infusion, Intra Arterial,Infusion, Intra-Arterial,Infusion, Intraarterial,Infusion, Regional Arterial,Intra Arterial Infusion,Intra Arterial Infusions,Intra-Arterial Infusion,Intra-Arterial Infusions,Intraarterial Infusion,Intraarterial Infusions,Regional Arterial Infusion,Regional Arterial Infusions
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females

Related Publications

H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
December 1991, European journal of pharmacology,
H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
June 1996, The American journal of physiology,
H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
November 1997, Diabetes,
H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
March 1996, Journal of the American College of Cardiology,
H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
October 2017, Atherosclerosis,
H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
December 1994, Journal of applied physiology (Bethesda, Md. : 1985),
H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
December 1994, Journal of applied physiology (Bethesda, Md. : 1985),
H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
June 1998, Circulation research,
H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
November 2023, General physiology and biophysics,
H O Steinberg, and G Brechtel, and A Johnson, and N Fineberg, and A D Baron
February 2012, Clinical and translational science,
Copied contents to your clipboard!