Morphogenesis of marek's disease virus in feather follicle epithelium. 1975

E A Johnson, and C N Burke, and T N Fredrickson, and R A DiCapua

Three evaluative systems, immunodiffusion, fluorescent antibody (FA), and electron microscopy (EM), were used to follow the morphogenesis of Marek's disease virus in inoculated chickens. Of the three, EM and FA were the most sensitive in detecting early stages of infection. Virus particles were found in skin biopsy specimens as early as 12 days post inoculation. Immature naked particles appeared first in the nucleus; later particles were enveloped in the cytoplasm and enclosed in cytoplasmic inclusion bodies. No evidence for continued virus replication was seen in feather follicles after an initial burst of heavy virus production, which lasted several weeks. Residual virus, however, was found occasionally in cytoplasmic inclusion bodies within keratinized material near the feathers. This was believed to contribute to the long-term shedding of infectious virus into the environment.

UI MeSH Term Description Entries
D007181 Inclusion Bodies, Viral An area showing altered staining behavior in the nucleus or cytoplasm of a virus-infected cell. Some inclusion bodies represent "virus factories" in which viral nucleic acid or protein is being synthesized; others are merely artifacts of fixation and staining. One example, Negri bodies, are found in the cytoplasm or processes of nerve cells in animals that have died from rabies. Negri Bodies,Viral Inclusion Bodies,Negri Body,Bodies, Negri,Bodies, Viral Inclusion,Body, Negri,Body, Viral Inclusion,Inclusion Body, Viral,Viral Inclusion Body
D008380 Marek Disease A transmissible viral disease of birds caused by avian herpesvirus 2 (HERPESVIRUS 2, GALLID) and other MARDIVIRUS. There is lymphoid cell infiltration or lymphomatous tumor formation in the peripheral nerves and gonads, but may also involve visceral organs, skin, muscle, and the eye. Fowl Paralysis,Marek's Disease,Fowl Paralyses,Mareks Disease,Paralyses, Fowl,Paralysis, Fowl
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005241 Feathers Flat keratinous structures found on the skin surface of birds. Feathers are made partly of a hollow shaft fringed with barbs. They constitute the plumage. Feather
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

E A Johnson, and C N Burke, and T N Fredrickson, and R A DiCapua
July 1971, Journal of the National Cancer Institute,
E A Johnson, and C N Burke, and T N Fredrickson, and R A DiCapua
January 1979, Avian diseases,
E A Johnson, and C N Burke, and T N Fredrickson, and R A DiCapua
January 1982, Avian diseases,
E A Johnson, and C N Burke, and T N Fredrickson, and R A DiCapua
January 1978, Avian pathology : journal of the W.V.P.A,
E A Johnson, and C N Burke, and T N Fredrickson, and R A DiCapua
May 1970, Avian diseases,
E A Johnson, and C N Burke, and T N Fredrickson, and R A DiCapua
June 2013, Avian diseases,
E A Johnson, and C N Burke, and T N Fredrickson, and R A DiCapua
June 1993, Avian pathology : journal of the W.V.P.A,
E A Johnson, and C N Burke, and T N Fredrickson, and R A DiCapua
December 2007, Virologie (Montrouge, France),
E A Johnson, and C N Burke, and T N Fredrickson, and R A DiCapua
December 2012, Avian diseases,
Copied contents to your clipboard!