Distribution of TAG-1/axonin-1 in fibre tracts and migratory streams of the developing mouse nervous system. 1994

D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
Institute of Anatomy, University of Zürich, Switzerland.

The axonal cell adhesion molecule, TAG-1/axonin-1, stimulates axonal growth and supports neurite fasciculation in vitro. Using a polyclonal antiserum raised against chick axonin-1, which shares 75% of its sequence with TAG-1 of the rat, we have mapped the distribution of TAG-1/axonin-1 throughout the developing nervous system of the mouse. Although absent from proliferating neuroepithelia and from non-neuronal cells, immunoreactivity for TAG-1/axonin-1 is expressed by stage-specific subpopulations of differentiating neurons from embryonic day 10 to postnatal day 15. It stains their axons and the surface of their parent somata during the early phases of axogenesis. In agreement with a putative role of TAG-1/axonin-1 as an axon-bound growth substrate, immunoreactivity is found in developing spinal and cranial nerves, in corticothalamic projections, as well as in subsets of fasciculating long projecting tracts of the central nervous system, such as the dorsal funiculi of the spinal cord, the lateral olfactory and optic tracts, the fasciculus retroflexus, and the predorsal bundle. High levels of immunoreactivity characterise the development of the cerebellar molecular layer, the corpus callosum, anterior and hippocampal commissure, and of crossed projections in the spinal cord and at several levels of the brainstem. Intense immunoreactivity in fine collaterals of cutaneous afferents, including their growth cones that are in contact with the embryonic skin, suggests a role of TAG-1/axonin-1 in target recognition. While staining is weak on the somata of radially migrating neurons such as cortical neurons and cerebellar granule cells, strong immunoreactivity is associated with neural somata and processes of the three tangential migrations that form the precerebellar nuclei, indicating a possible involvement of TAG-1/axonin-1 in contacts between these neurons and the processes they migrate upon.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D006824 Hybridization, Genetic The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid. Crossbreeding,Hybridization, Intraspecies,Crossbreedings,Genetic Hybridization,Genetic Hybridizations,Hybridizations, Genetic,Hybridizations, Intraspecies,Intraspecies Hybridization,Intraspecies Hybridizations

Related Publications

D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
March 2008, Neural development,
D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
February 2019, Journal of anatomy,
D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
March 1998, Anatomy and embryology,
D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
December 2012, Neuroscience,
D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
June 2009, The Journal of comparative neurology,
D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
January 1996, Developmental biology,
D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
January 1993, European journal of biochemistry,
D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
January 1981, Archives of oral biology,
D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
May 2001, The Journal of comparative neurology,
D P Wolfer, and A Henehan-Beatty, and E T Stoeckli, and P Sonderegger, and H P Lipp
September 1990, Experientia,
Copied contents to your clipboard!