Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. 1994

K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
Laboratory of Chemoprevention, National Cancer Institute, Bethesda, MD 20892.

We have found several genetic changes in the TGF-beta-type II receptor gene in human gastric cancer cell lines resistant to the growth inhibitory effect of TGF-beta. Southern blot analysis showed deletion of the type II receptor gene in two of eight cell lines and amplification in another two lines. The single cell line we studied that is sensitive to growth inhibition by TGF-beta showed no structural abnormalities of the type II receptor gene. Some of the gastric cancer cells resistant to the growth inhibitory effect of TGF-beta express either truncated or no detectable TGF-beta type II receptor mRNAs, whereas the one that retains responsiveness to the growth inhibitory effect of TGF-beta expresses a full-size type II receptor mRNA. Immunoprecipitation followed by Western blot analysis showed parallel changes in TGF-beta type II receptor expression. Our results suggest that one of the possible mechanisms of escape from autocrine or paracrine growth control by TGF-beta during carcinogenesis could involve genetic changes in the TGF-beta type II receptor gene itself or altered expression of its mRNA.

UI MeSH Term Description Entries
D002277 Carcinoma A malignant neoplasm made up of epithelial cells tending to infiltrate the surrounding tissues and give rise to metastases. It is a histological type of neoplasm and not a synonym for "cancer." Carcinoma, Anaplastic,Carcinoma, Spindle-Cell,Carcinoma, Undifferentiated,Carcinomatosis,Epithelial Neoplasms, Malignant,Epithelioma,Epithelial Tumors, Malignant,Malignant Epithelial Neoplasms,Neoplasms, Malignant Epithelial,Anaplastic Carcinoma,Anaplastic Carcinomas,Carcinoma, Spindle Cell,Carcinomas,Carcinomatoses,Epithelial Neoplasm, Malignant,Epithelial Tumor, Malignant,Epitheliomas,Malignant Epithelial Neoplasm,Malignant Epithelial Tumor,Malignant Epithelial Tumors,Neoplasm, Malignant Epithelial,Spindle-Cell Carcinoma,Spindle-Cell Carcinomas,Tumor, Malignant Epithelial,Undifferentiated Carcinoma,Undifferentiated Carcinomas
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013274 Stomach Neoplasms Tumors or cancer of the STOMACH. Cancer of Stomach,Gastric Cancer,Gastric Neoplasms,Stomach Cancer,Cancer of the Stomach,Gastric Cancer, Familial Diffuse,Neoplasms, Gastric,Neoplasms, Stomach,Cancer, Gastric,Cancer, Stomach,Cancers, Gastric,Cancers, Stomach,Gastric Cancers,Gastric Neoplasm,Neoplasm, Gastric,Neoplasm, Stomach,Stomach Cancers,Stomach Neoplasm
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk

Related Publications

K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
January 1996, Cancer research,
K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
January 2001, Gene expression,
K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
December 2000, The Journal of biological chemistry,
K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
June 1993, Proceedings of the National Academy of Sciences of the United States of America,
K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
January 1997, Zhonghua zhong liu za zhi [Chinese journal of oncology],
K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
February 1996, The Journal of biological chemistry,
K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
February 2001, The Journal of urology,
K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
December 2008, Oncology reports,
K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
July 1997, Oncogene,
K Park, and S J Kim, and Y J Bang, and J G Park, and N K Kim, and A B Roberts, and M B Sporn
April 1999, Oncogene,
Copied contents to your clipboard!