Subcellular localization of the UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland. 1994

J Roth, and Y Wang, and A E Eckhardt, and R L Hill
Department of Pathology, University of Zürich, Switzerland.

Addition of N-acetylgalactosamine to threonine and serine is the first step in the synthesis of O-glycosidically linked oligosaccharides. A UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase (EC 2.4.1.41) from porcine submaxillary glands was recently purified to electrophoretic homogeneity, and polyclonal antibodies against the purified transferase were raised. Immunoblots of porcine, bovine, and ovine submaxillary gland extracts with the anti-transferase antibodies gave a single band and the antibodies reacted equally well with the purified glycosylated and N-glycanase-treated transferase. Immunoelectron microscopic localization of the transferase was achieved in Lowicryl K4M thin sections and frozen-thawed thin sections of porcine and bovine submaxillary gland by using the protein A-gold technique. Specific gold particle labeling was observed in the cis Golgi apparatus and smooth-membraned vesicular structures in close topological relation with it. Labeling was undetectable in the rough endoplasmic reticulum, its transitional elements, and smooth-membraned structures close to them, the trans Golgi apparatus, mucin droplets, and the plasma membrane. The onset of labeling for peptide-bound GalNAc as detected with Vicia villosa isolectin G4 mirrored the transferase immunolocalization as directly shown by double labeling and extended into the trans Golgi apparatus and mucous droplets. Apomucin immunolabeling was found throughout the endoplasmic reticulum and the intermediate compartment and partially overlapped the region of transferase labeling in the Golgi apparatus as demonstrated by double immunolabeling. Thus, the initial step of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation in porcine and bovine submaxillary gland cells occurs in the cis Golgi apparatus. The possible involvement of the intermediate compartment remains to be clarified.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013363 Submandibular Gland One of two salivary glands in the neck, located in the space bound by the two bellies of the digastric muscle and the angle of the mandible. It discharges through the submandibular duct. The secretory units are predominantly serous although a few mucous alveoli, some with serous demilunes, occur. (Stedman, 25th ed) Submaxillary Gland,Gland, Submandibular,Gland, Submaxillary,Glands, Submandibular,Glands, Submaxillary,Submandibular Glands,Submaxillary Glands
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

J Roth, and Y Wang, and A E Eckhardt, and R L Hill
July 1995, The Journal of biological chemistry,
J Roth, and Y Wang, and A E Eckhardt, and R L Hill
March 2006, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J Roth, and Y Wang, and A E Eckhardt, and R L Hill
December 2000, The Journal of biological chemistry,
J Roth, and Y Wang, and A E Eckhardt, and R L Hill
January 2009, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J Roth, and Y Wang, and A E Eckhardt, and R L Hill
July 1996, The Journal of biological chemistry,
Copied contents to your clipboard!