DNA polymerase delta is required for base excision repair of DNA methylation damage in Saccharomyces cerevisiae. 1994

A Blank, and B Kim, and L A Loeb
Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle 98195.

We present evidence that DNA polymerase delta of Saccharomyces cerevisiae, an enzyme that is essential for viability and chromosomal replication, is also required for base excision repair of exogenous DNA methylation damage. The large catalytic subunit of DNA polymerase delta is encoded by the CDC2(POL3) gene. We find that the mutant allele cdc2-2 confers sensitivity to killing by methyl methanesulfonate (MMS) but allows wild-type levels of UV survival. MMS survival of haploid cdc2-2 strains is lower than wild type at the permissive growth temperature of 20 degrees C. Survival is further decreased relative to wild type by treatment with MMS at 36 degrees C, a nonpermissive temperature for growth of mutant cells. A second DNA polymerase delta allele, cdc2-1, also confers a temperature-sensitive defect in MMS survival while allowing nearly wild-type levels of UV survival. These observations provide an in vivo genetic demonstration that a specific eukaryotic DNA polymerase is required for survival of exogenous methylation damage. MMS sensitivity of a cdc2-2 mutant at 20 degrees C is complemented by expression of mammalian DNA polymerase beta, an enzyme that fills single-strand gaps in duplex DNA in vitro and whose only known catalytic activity is polymerization of deoxyribonucleotides. We conclude, therefore, that the MMS survival deficit in cdc2-2 cells is caused by failure of mutant DNA polymerase delta to fill single-strand gaps arising in base excision repair of methylation damage. We discuss our results in light of current concepts of the physiologic roles of DNA polymerases delta and epsilon in DNA replication and repair.

UI MeSH Term Description Entries
D008741 Methyl Methanesulfonate An alkylating agent in cancer therapy that may also act as a mutagen by interfering with and causing damage to DNA. Methylmethane Sulfonate,Dimethylsulfonate,Mesilate, Methyl,Methyl Mesylate,Methyl Methylenesulfonate,Methylmesilate,Mesylate, Methyl,Methanesulfonate, Methyl,Methyl Mesilate
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

A Blank, and B Kim, and L A Loeb
September 1993, Current genetics,
A Blank, and B Kim, and L A Loeb
January 2004, Nucleic acids research,
A Blank, and B Kim, and L A Loeb
October 2006, Molecular and cellular biochemistry,
A Blank, and B Kim, and L A Loeb
December 1996, Current genetics,
A Blank, and B Kim, and L A Loeb
April 1995, Molecular and cellular biology,
Copied contents to your clipboard!