Responses of cerebral arterioles to kainate. 1994

F M Faraci, and K R Breese, and D D Heistad
Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.

OBJECTIVE Neurons release nitric oxide in response to glutamate. Glutamate acts via activation of different receptor subtypes, including N-methyl-D-aspartate and kainate receptors. This study examined the hypothesis that kainate produces dilatation of cerebral arterioles that is dependent on the formation of nitric oxide. METHODS Diameters of cerebral arterioles were measured by means of a closed cranial window in anesthetized rabbits. Kainate, quisqualate, acetylcholine, and NG-nitro-L-arginine (L-NNA, an inhibitor of nitric oxide synthase) were applied locally in the cranial window. We also examined whether kainate elicited direct vascular effects by the use of isolated cerebral arteries in vitro. RESULTS Under control conditions, topical kainate (100 mumol/L) increased the diameter of arterioles by 20 +/- 5% (mean +/- SE), 27 +/- 7%, and 31 +/- 7% at 3, 5, and 9 minutes of application, respectively. After topical application of L-NNA (300 mumol/L), kainate dilated cerebral arterioles by 8 +/- 4%, 9 +/- 5%, and 8 +/- 6% at 3, 5, and 9 minutes, respectively (P < .05 versus the control response). In contrast, quisqualate (100 and 300 mumol/L) did not alter the diameter of cerebral arterioles. In rings of the middle cerebral artery studied in vitro, kainate had no effect on vascular tone, which suggests that cerebral vessels lack receptors for kainate. Thus, cerebral vasodilator effects of kainate do not appear to be due to the direct effect of the excitatory amino acid on cerebral vessels. CONCLUSIONS These findings suggest that kainate produces dilatation of cerebral arterioles in vivo that is mediated by release of nitric oxide from an extravascular source.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole

Related Publications

F M Faraci, and K R Breese, and D D Heistad
September 1982, The American journal of physiology,
F M Faraci, and K R Breese, and D D Heistad
January 1992, Journal of vascular research,
F M Faraci, and K R Breese, and D D Heistad
April 1990, The American journal of physiology,
F M Faraci, and K R Breese, and D D Heistad
March 1992, The American journal of physiology,
F M Faraci, and K R Breese, and D D Heistad
April 1978, The American journal of physiology,
F M Faraci, and K R Breese, and D D Heistad
November 1995, Stroke,
F M Faraci, and K R Breese, and D D Heistad
December 2004, American journal of physiology. Heart and circulatory physiology,
F M Faraci, and K R Breese, and D D Heistad
June 1985, British journal of pharmacology,
F M Faraci, and K R Breese, and D D Heistad
February 1991, The American journal of physiology,
Copied contents to your clipboard!