[Oncotic pressure and hemodilution]. 1994

C Tommasino, and P A Ravussin
Università di Milano, Istituto di Anestesiologia e Rianimazione, San Raffaele, Italy.

The appropriate fluid therapy in neurosurgical patients remains an area of disagreement between neurosurgeons and anaesthesiologists. Fluid restriction has long been practiced in patients with brain pathology, in order to reduce or prevent the formation of cerebral oedema. This grows from a fear that rapid administration of fluids, particularly noncolloidal fluids, can enhance cerebral oedema, although there is a lack of experimental evidence to substantiate this belief. On the other hand, fluid restriction can lead to relative hypovolaemia, causing haemodynamic instability during anaesthesia and influence defavourably cerebral perfusion. The appropriate fluid management of patients with brain pathology requires a careful review of the Starling's law and a clear understanding of osmolality, oncotic pressure (OP) and the nature of the blood-brain barrier (BBB). The Starling equation of ultrafiltration states that the net movement of fluid between the intra- and extravascular compartments is the result of the summated influences of the pressure gradients (hydrostatic pressure, OP, and osmotic pressure) between those compartments and the properties of the barriers (capillary endothelium) that separate them. In most peripheral tissues this barrier is freely permeable to small molecules and ions and net fluid movement depends on intravascular hydrostatic pressure and OP. Under normal circumstances, intraluminal hydrostatic pressure is higher than interstitial pressure, favouring water egress. By contrast, intraluminal OP is higher than interstitial OP, favouring water retention. These forces do not balance exactly, and fluid accumulation is prevented by the lymphatics. If this net movement exceeds the capacity of the lymphatic clearance mechanisms, fluid accumulates, which is the definition of oedema.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001929 Brain Edema Increased intracellular or extracellular fluid in brain tissue. Cytotoxic brain edema (swelling due to increased intracellular fluid) is indicative of a disturbance in cell metabolism, and is commonly associated with hypoxic or ischemic injuries (see HYPOXIA, BRAIN). An increase in extracellular fluid may be caused by increased brain capillary permeability (vasogenic edema), an osmotic gradient, local blockages in interstitial fluid pathways, or by obstruction of CSF flow (e.g., obstructive HYDROCEPHALUS). (From Childs Nerv Syst 1992 Sep; 8(6):301-6) Brain Swelling,Cerebral Edema,Cytotoxic Brain Edema,Intracranial Edema,Vasogenic Cerebral Edema,Cerebral Edema, Cytotoxic,Cerebral Edema, Vasogenic,Cytotoxic Cerebral Edema,Vasogenic Brain Edema,Brain Edema, Cytotoxic,Brain Edema, Vasogenic,Brain Swellings,Cerebral Edemas, Vasogenic,Edema, Brain,Edema, Cerebral,Edema, Cytotoxic Brain,Edema, Cytotoxic Cerebral,Edema, Intracranial,Edema, Vasogenic Brain,Edema, Vasogenic Cerebral,Swelling, Brain
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D006438 Hemodilution Reduction of blood viscosity usually by the addition of cell free solutions. Used clinically (1) in states of impaired microcirculation, (2) for replacement of intraoperative blood loss without homologous blood transfusion, and (3) in cardiopulmonary bypass and hypothermia. Hemodilutions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries

Related Publications

C Tommasino, and P A Ravussin
September 1977, The New England journal of medicine,
C Tommasino, and P A Ravussin
June 1982, Anesthesia and analgesia,
C Tommasino, and P A Ravussin
January 2005, Nihon rinsho. Japanese journal of clinical medicine,
C Tommasino, and P A Ravussin
October 1953, Medizinische Klinik,
C Tommasino, and P A Ravussin
January 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
C Tommasino, and P A Ravussin
October 1980, Journal of neurosurgery,
C Tommasino, and P A Ravussin
March 1979, Critical care medicine,
C Tommasino, and P A Ravussin
October 1985, Lancet (London, England),
C Tommasino, and P A Ravussin
July 1985, Lancet (London, England),
Copied contents to your clipboard!