[Subarachnoid hemorrhage: cerebral damage, fluid balance, intracranial pressure and pressure-volume relation]. 1994

N Stocchetti, and F Bridelli, and V Nizzoli, and P A Ravussin
Department of Anaesthesia and Intensive Care, Ospedale di Parma, Italy.

Changes in osmolality and electrolyte concentrations are observed frequently in patients with subarachnoid haemorrhage (SAH). Intracranial pressure (ICP) plays a determinant role in the development of secondary brain damage following SAH and may be caused by haemorrhage itself, oedema formation and disturbance of cerebrospinal fluid (CSF) dynamics. The relationships among these factors are the aim of this investigation. In 17 comatose SAH patients, ICP was monitored through a ventricular catheter; serial of pressure-volume index (PVI) and CSF formation and reabsorption were performed. Arterio-jugular differences for oxygen and lactate were measured. The average ICP recorded for each 12 hour interval was 18.9 mmHg (SD = 5.9); mean cerebral perfusion pressure (CPP) was 75 mmHg (SD = 13); the lowest CPP value was 30 mmHg. Mean PVI was 22.7 mL (SD = 7.4), ranging from 5 to 36. Eleven patients however, showed a PVI less than 15 mL at some point during testing. Values of CSF dynamics indicated disturbances of CSF reabsorption in 11 cases. When the cause of ICP rise was identified in CSF disturbances, treatment was successful, even in case of reduced PVI. Mean C(a-v)O2, corrected for a PaCO2 of 40 mmHg, was 3.7 mL.dL-1 (SD = 1.1) ranging from the extremely low value of 0.2 to 6.8 mL.L-1. Three patients with extremely low C(a-v)O2 values showed a cerebral production of lactate and developed areas of ischaemia on the CT scan. Hyponatraemia, considered as a sodium plasma concentration of less than 135 mmol.L-1, was detected in seven patients. Hyponatraemia was treated by infusion of hypertonic sodium solutions. Mannitol (1 g.kg-1.d-1 in four doses) was infused if the sodium plasma concentration was not corrected by the former treatment or if ICP exceeded 20 mmHg. Treatment was aimed at preserving cerebral perfusion by providing adequate pre-load, low viscosity (Ht 30%) and sustained arterial pressure. Correction of hyponatraemia was therefore achieved more through hypertonic fluids infusion than by using diuretics.

UI MeSH Term Description Entries
D007010 Hyponatremia Deficiency of sodium in the blood; salt depletion. (Dorland, 27th ed) Hyponatremias
D007427 Intracranial Pressure Pressure within the cranial cavity. It is influenced by brain mass, the circulatory system, CSF dynamics, and skull rigidity. Intracerebral Pressure,Subarachnoid Pressure,Intracerebral Pressures,Intracranial Pressures,Pressure, Intracerebral,Pressure, Intracranial,Pressure, Subarachnoid,Pressures, Intracerebral,Pressures, Intracranial,Pressures, Subarachnoid,Subarachnoid Pressures
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008991 Monitoring, Physiologic The continuous measurement of physiological processes, blood pressure, heart rate, renal output, reflexes, respiration, etc., in a patient or experimental animal; includes pharmacologic monitoring, the measurement of administered drugs or their metabolites in the blood, tissues, or urine. Patient Monitoring,Monitoring, Physiological,Physiologic Monitoring,Monitoring, Patient,Physiological Monitoring
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001929 Brain Edema Increased intracellular or extracellular fluid in brain tissue. Cytotoxic brain edema (swelling due to increased intracellular fluid) is indicative of a disturbance in cell metabolism, and is commonly associated with hypoxic or ischemic injuries (see HYPOXIA, BRAIN). An increase in extracellular fluid may be caused by increased brain capillary permeability (vasogenic edema), an osmotic gradient, local blockages in interstitial fluid pathways, or by obstruction of CSF flow (e.g., obstructive HYDROCEPHALUS). (From Childs Nerv Syst 1992 Sep; 8(6):301-6) Brain Swelling,Cerebral Edema,Cytotoxic Brain Edema,Intracranial Edema,Vasogenic Cerebral Edema,Cerebral Edema, Cytotoxic,Cerebral Edema, Vasogenic,Cytotoxic Cerebral Edema,Vasogenic Brain Edema,Brain Edema, Cytotoxic,Brain Edema, Vasogenic,Brain Swellings,Cerebral Edemas, Vasogenic,Edema, Brain,Edema, Cerebral,Edema, Cytotoxic Brain,Edema, Cytotoxic Cerebral,Edema, Intracranial,Edema, Vasogenic Brain,Edema, Vasogenic Cerebral,Swelling, Brain
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D005260 Female Females

Related Publications

N Stocchetti, and F Bridelli, and V Nizzoli, and P A Ravussin
January 2008, Neurocritical care,
N Stocchetti, and F Bridelli, and V Nizzoli, and P A Ravussin
April 2024, Neurocritical care,
N Stocchetti, and F Bridelli, and V Nizzoli, and P A Ravussin
January 1978, Acta neurochirurgica,
N Stocchetti, and F Bridelli, and V Nizzoli, and P A Ravussin
January 2015, Critical care medicine,
N Stocchetti, and F Bridelli, and V Nizzoli, and P A Ravussin
December 2016, Clinical laboratory,
N Stocchetti, and F Bridelli, and V Nizzoli, and P A Ravussin
January 1981, Journal of neurosurgical sciences,
N Stocchetti, and F Bridelli, and V Nizzoli, and P A Ravussin
January 1986, No shinkei geka. Neurological surgery,
N Stocchetti, and F Bridelli, and V Nizzoli, and P A Ravussin
December 2009, Neurocritical care,
N Stocchetti, and F Bridelli, and V Nizzoli, and P A Ravussin
June 1981, Journal of neurosurgery,
Copied contents to your clipboard!