Structure and function of the DNA repair enzyme exonuclease III from E. coli. 1994

C F Kuo, and C D Mol, and M M Thayer, and R P Cunningham, and J A Tainer
Department of Structural Biology, Abbott Laboratories, Illinois 60064.

The three-dimensional structure of exonuclease III, the major AP DNA repair endonuclease of Escherichia coli, has been determined using x-ray crystallographic methods at 2.7 A resolution. The atomic model was fit to an electron density map calculated with phases obtained from three isomorphous heavy atom derivatives. The overall chain fold of exonuclease III is that of a compact alpha,beta-protein of dimensions 55 by 50 by 45 A. The pair of extended beta-pleated sheets pack against each other in an approximately parallel fashion to form the hydrophobic core of a four-layered sandwich structure. These beta sheets are flanked by four alpha-helices that form the outer two layers of the fold. The individual strands of the beta-sheets are in a mostly antiparallel configuration and are linked by extensive loop regions that connect adjoining strands. The structure contains internal symmetry with the two extended beta-sheets and four alpha-helices related by a pseudo-twofold axis running approximately down the center of the two sheets. This internal symmetry is not mirrored in the structure of the loop regions, nor is it detectable within the amino acid sequence. There is a "groove" between the beta-sheets at one end of the molecule that is bordered by several of the exposed loop regions and may be significant for DNA binding.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein

Related Publications

C F Kuo, and C D Mol, and M M Thayer, and R P Cunningham, and J A Tainer
January 1993, Journal of molecular biology,
C F Kuo, and C D Mol, and M M Thayer, and R P Cunningham, and J A Tainer
August 1982, Nucleic acids research,
C F Kuo, and C D Mol, and M M Thayer, and R P Cunningham, and J A Tainer
January 2014, Nucleic acids research,
C F Kuo, and C D Mol, and M M Thayer, and R P Cunningham, and J A Tainer
September 1999, Bioscience, biotechnology, and biochemistry,
C F Kuo, and C D Mol, and M M Thayer, and R P Cunningham, and J A Tainer
January 1987, CRC critical reviews in biochemistry,
C F Kuo, and C D Mol, and M M Thayer, and R P Cunningham, and J A Tainer
March 1968, Nature,
C F Kuo, and C D Mol, and M M Thayer, and R P Cunningham, and J A Tainer
February 1992, BioEssays : news and reviews in molecular, cellular and developmental biology,
C F Kuo, and C D Mol, and M M Thayer, and R P Cunningham, and J A Tainer
June 2001, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
C F Kuo, and C D Mol, and M M Thayer, and R P Cunningham, and J A Tainer
October 1992, Science (New York, N.Y.),
Copied contents to your clipboard!