Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum. 1993

B J Eikmanns, and L Eggeling, and H Sahm
Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Germany.

The Gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of L-glutamate and L-lysine. In the last ten years genetic engineering methods were developed for C. glutamicum and consequently, recombinant DNA technology was employed to study the biosynthetic pathways and to improve the amino acid productivity by manipulation of enzymatic, transport and regulatory functions of this bacterium. The present review summarizes the current knowledge on the synthesis and over-production of the aspartate derived amino acids L-lysine, L-threonine and L-isoleucine in C. glutamicum. A special feature of C. glutamicum is its ability to convert the lysine intermediate piperideine2,6-dicarboxylate to diaminopimelate by two different routes, i.e. by reactions involving succinylated intermediates or by the single reaction of diaminopimelate dehydrogenase. The flux distribution over the two pathways is regulated by the ammonium availability. The overall carbon flux from aspartate to lysine, however, is governed by feedback-control of the aspartate kinase and by the level of dihydrodipicolinate synthase. Consequently, expression of lysCFBR encoding a deregulated aspartate kinase and/or the overexpression of dapA encoding dihydrodipicolinate synthase led to overproduction of lysine. As a further specific feature C. glutamicum possesses a specific lysine export carrier which shows high activity in lysine overproducing mutants. Threonine biosynthesis is in addition to control by the aspartate kinase tightly regulated at the level of homoserine dehydrogenase which is subject to feedback-inhibition and to repression. C. glutamicum strains possessing a deregulated aspartate kinase and a deregulated homoserine dehydrogenase produce lysine and threonine. Amplification of deregulated homoserine dehydrogenase in such strains led to an almost complete redirection of the carbon flux to threonine. For a further flux from threonine to isoleucine the allosteric control of threonine dehydratase and of the acetohydroxy acid synthase are important. The expression of the genes encoding the latter enzyme is additionally regulated at the transcriptional level. By addition of 2-oxobutyrate as precursor and by bypassing the expression control of the acetohydroxy acid synthase genes high isoleucine overproduction can be obtained.

UI MeSH Term Description Entries
D007532 Isoleucine An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. Alloisoleucine,Isoleucine, L-Isomer,L-Isoleucine,Isoleucine, L Isomer,L-Isomer Isoleucine
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003352 Corynebacterium A genus of asporogenous bacteria that is widely distributed in nature. Its organisms appear as straight to slightly curved rods and are known to be human and animal parasites and pathogens.
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D013912 Threonine An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine,L Threonine

Related Publications

B J Eikmanns, and L Eggeling, and H Sahm
September 2012, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
B J Eikmanns, and L Eggeling, and H Sahm
December 1988, Journal of general microbiology,
B J Eikmanns, and L Eggeling, and H Sahm
September 2015, World journal of microbiology & biotechnology,
B J Eikmanns, and L Eggeling, and H Sahm
October 1990, Molecular microbiology,
B J Eikmanns, and L Eggeling, and H Sahm
September 1996, Applied and environmental microbiology,
B J Eikmanns, and L Eggeling, and H Sahm
July 2012, Enzyme and microbial technology,
B J Eikmanns, and L Eggeling, and H Sahm
January 1980, Folia microbiologica,
Copied contents to your clipboard!