Effects of red cell transfusion on cardiac output and blood flow velocities in cerebral and gastrointestinal arteries in premature infants. 1994

M Nelle, and C Höcker, and E P Zilow, and O Linderkamp
Department of Neonatology, University Children's Hospital, University of Heidelberg, Germany.

Anaemia may increase the risk of tissue hypoxia in preterm infants. The effect of transfusion on circulation was studied in 33 preterm infants with a mean (SD) gestational age of 29 (5) weeks (range 26-34), birth weight 1153 (390) g (range 520-1840), and postnatal age of 48 (21) days (range 19-100). Packed cell volume, blood viscosity (capillary viscometer), cardiac output, and cerebral blood flow velocities in the internal carotid artery, anterior cerebral artery, and coeliac trunk (Doppler ultrasound) were determined before and after transfusion of 10 ml/kg of packed red blood cells. Transfusion increased packed cell volume from a mean (SD) 0.27 (0.45) to 0.37 (0.48). Mean arterial blood pressure did not change while heart rate decreased significantly from 161 (14) l/min to 149 (12). Cardiac output decreased from 367 (93) ml/kg/min to 311 (74) due to decrease in stroke volume from 2.28 (0.57) ml/kg to 2.14 (0.46) and in heart rate. There was a significant increase in systemic red cell transport (cardiac output times packed cell volume) by 17%, systemic flow resistance (blood pressure to cardiac output ratio) by 23%, and blood viscosity by 33%. Vascular hindrance (flow resistance to blood viscosity ratio) did not change significantly, thereby suggesting that neither vasoconstriction nor vasodilation occurred with transfusion. After transfusion blood flow velocities decreased significantly in the anterior cerebral artery by 23%, in the internal carotid artery by 8%, and in the coeliac trunk by 12%. Red cell transport estimated as products of blood flow velocities times packed cell volume increased significantly by 25% in the internal carotid artery and by 21% in the coeliac trunk. These results indicate that red cell transfusion improved systemic oxygen transport as well as oxygen transport in the internal carotid artery and coeliac trunk.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007234 Infant, Premature A human infant born before 37 weeks of GESTATION. Neonatal Prematurity,Premature Infants,Preterm Infants,Infant, Preterm,Infants, Premature,Infants, Preterm,Premature Infant,Prematurity, Neonatal,Preterm Infant
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D002343 Carotid Artery, Internal Branch of the common carotid artery which supplies the anterior part of the brain, the eye and its appendages, the forehead and nose. Arteries, Internal Carotid,Artery, Internal Carotid,Carotid Arteries, Internal,Internal Carotid Arteries,Internal Carotid Artery
D002445 Celiac Artery The arterial trunk that arises from the abdominal aorta and after a short course divides into the left gastric, common hepatic and splenic arteries. Arteries, Celiac,Artery, Celiac,Celiac Arteries
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D017707 Erythrocyte Transfusion The transfer of erythrocytes from a donor to a recipient or reinfusion to the donor. Red Blood Cell Transfusion,Red Blood Cell Transfusions,Transfusion, Red Blood Cell,Transfusions, Red Blood Cell,Erythrocyte Transfusions,Transfusion, Erythrocyte,Transfusions, Erythrocyte

Related Publications

M Nelle, and C Höcker, and E P Zilow, and O Linderkamp
May 1995, American journal of perinatology,
M Nelle, and C Höcker, and E P Zilow, and O Linderkamp
September 2013, Early human development,
M Nelle, and C Höcker, and E P Zilow, and O Linderkamp
October 2001, European journal of pediatrics,
M Nelle, and C Höcker, and E P Zilow, and O Linderkamp
May 2019, Pediatric research,
M Nelle, and C Höcker, and E P Zilow, and O Linderkamp
January 1993, Pediatric radiology,
M Nelle, and C Höcker, and E P Zilow, and O Linderkamp
May 1991, No to hattatsu = Brain and development,
M Nelle, and C Höcker, and E P Zilow, and O Linderkamp
January 1988, Journal of clinical ultrasound : JCU,
M Nelle, and C Höcker, and E P Zilow, and O Linderkamp
February 2008, The Journal of pediatrics,
M Nelle, and C Höcker, and E P Zilow, and O Linderkamp
July 1965, The British journal of surgery,
Copied contents to your clipboard!