clpX encoding an alternative ATP-binding subunit of protease Ti (Clp) can be expressed independently from clpP in Escherichia coli. 1994

S J Yoo, and J H Seol, and M S Kang, and D B Ha, and C H Chung
Department of Molecular Biology, College of Natural Sciences, Seoul National University, Korea.

ClpX, an alternative ATP-binding subunit for protease Ti (also called Clp), has been shown to support the ATP-dependent hydrolysis of lambda O-protein by ClpP. clpX has also been reported to be in an operon with clpP, and therefore both are co-transcribed in a single mRNA using the promoter proximal to clpP. Here, we show that clpX can be expressed independently from clpP using its own promoter. The cells carrying clpX alone on a multicopy plasmid successively produced the 46-kDa ClpX protein. Moreover, in vitro translation analysis revealed that the recombinant plasmid containing clpX generates the 46-kDa protein that can be immunoprecipitated with anti-ClpX antibody. In addition, it has recently been reported that CipX, but not ClpP, is required for normal replication of bacteriophage Mu. Thus, it appears that clpX can be expressed alone and/or co-expressed with clpP in cells depending on physiological conditions.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000074183 ATPases Associated with Diverse Cellular Activities A large highly conserved family of ATPases with diverse functions in cells that are characterized by the presence of a P-LOOP and a ring shape. They couple the energy generated by ATP hydrolysis to remodeling or mechanical translocation of their target molecules. AAA ATPase,AAA Protease,AAA+ ATPase,AAA+ Protease,AAA ATPases,AAA Proteases,AAA+ ATPases,AAA+ Proteases,ATPase, AAA,ATPase, AAA+,ATPases, AAA+,Protease, AAA,Protease, AAA+,Proteases, AAA,Proteases, AAA+
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S J Yoo, and J H Seol, and M S Kang, and D B Ha, and C H Chung
October 1993, The Journal of biological chemistry,
S J Yoo, and J H Seol, and M S Kang, and D B Ha, and C H Chung
September 1996, Biological chemistry,
S J Yoo, and J H Seol, and M S Kang, and D B Ha, and C H Chung
January 1994, Methods in enzymology,
S J Yoo, and J H Seol, and M S Kang, and D B Ha, and C H Chung
December 1995, Biochemical and biophysical research communications,
S J Yoo, and J H Seol, and M S Kang, and D B Ha, and C H Chung
October 1993, The Journal of biological chemistry,
S J Yoo, and J H Seol, and M S Kang, and D B Ha, and C H Chung
August 1991, Biochemical Society transactions,
S J Yoo, and J H Seol, and M S Kang, and D B Ha, and C H Chung
September 1996, Journal of molecular biology,
S J Yoo, and J H Seol, and M S Kang, and D B Ha, and C H Chung
August 1987, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!