Characterization of a biotinylated somatostatin analog as a receptor probe. 1993

A Schonbrunn, and A B Lee, and P J Brown
Department of Pharmacology, University of Texas Medical School, Houston 77225.

The neuropeptide somatostatin (SRIF) triggers its biological effects by binding to high affinity membrane receptors. To develop a ligand useful for receptor affinity purification and localization, we have examined the ability of a novel monobiotinylated SRIF derivative to bind to receptors and streptavidin. Unlabeled [N-Biotinyl, Leu8, D-Trp22, Tyr25]SRIF28 (Bio-SRIF28) competed for [125I-Tyr11]SRIF binding to GH4C1 pituitary cell membranes with a Ki of 337 +/- 95 pM, comparable to that of native SRIF (193 +/- 16 pM). Studies using HPLC purified [125I]Bio-SRIF28 showed that equilibrium binding to membranes occurred within 120 min at 30 C and that the peptide-receptor complex dissociated slowly (t1/2 = 4.7 h). Analysis of saturation binding data gave an equilibrium dissociation constant for [125I]Bio-SRIF28 of 66 +/- 20 pM. Photoaffinity cross-linking of [125I]Bio-SRIF28 to membranes covalently labeled a broad 85 kDa band, as previously reported with the photolabile SRIF analog, [125I-Tyr11, Azidonitrobenzoyl-Lys4]SRIF. The binding of [125I]Bio-SRIF28 was potently inhibited by SRIF (Ki = 171 +/- 36 pM) and SRIF28 (299 +/- 102 pM) but not by structurally unrelated peptides. Furthermore, [125I]Bio-SRIF28 did not bind to membranes from GH(1)2C1 pituitary cells, which do not respond to SRIF and which lack [125I-Tyr11]SRIF binding sites. Finally, GppNHp and GTP gamma S both decreased [125I]Bio-SRIF28 binding whereas AppNHp did not. These studies showed that [125I]Bio-SRIF28 bound with high affinity to specific, G-protein coupled SRIF receptors. [125I]Bio-SRIF28 also bound with high affinity to streptavidin and this binding was very stable (t1/2 for dissociation = 19 h). Therefore, the affinity of the receptor for the Bio-SRIF28-streptavidin complex was determined by measuring the potency with which this preformed complex competed for [125I-Tyr11]SRIF binding. The Ki of the Bio-SRIF28-streptavidin complex (1110 +/- 47 pM) was only 3 times higher than that of uncomplexed Bio-SRIF28 (Ki = 337 +/- 95 pM). Dissociation of the [125I]Bio-SRIF28-streptavidin complex from receptors was slow (t1/2 = 3.9 h) but was increased over 200-fold by 1 microM GTP gamma S (t1/2 < 1 min). These data show that Bio-SRIF28 was able to bind simultaneously and with high affinity both to SRIF receptors and to streptavidin to form a stable ternary complex. Further, receptor binding of the Bio-SRIF28-streptavidin complex could be regulated by the addition of guanine nucleotides. Thus, Bio-SRIF28 should be useful for the affinity purification and in situ localization of SRIF receptors.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D001710 Biotin A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Vitamin H,Biodermatin,Biokur,Biotin Gelfert,Biotin Hermes,Biotin-Ratiopharm,Biotine Roche,Deacura,Gabunat,Medebiotin,Medobiotin,Rombellin,Biotin Ratiopharm,Gelfert, Biotin,Hermes, Biotin,Roche, Biotine

Related Publications

A Schonbrunn, and A B Lee, and P J Brown
May 1991, Laboratory investigation; a journal of technical methods and pathology,
A Schonbrunn, and A B Lee, and P J Brown
January 1991, Peptides,
A Schonbrunn, and A B Lee, and P J Brown
May 1983, The Journal of biological chemistry,
A Schonbrunn, and A B Lee, and P J Brown
August 1992, The Journal of biological chemistry,
A Schonbrunn, and A B Lee, and P J Brown
January 1991, Peptides,
A Schonbrunn, and A B Lee, and P J Brown
January 1986, Peptides,
A Schonbrunn, and A B Lee, and P J Brown
September 2011, Bioorganic & medicinal chemistry letters,
A Schonbrunn, and A B Lee, and P J Brown
January 2003, Cancer chemotherapy and biological response modifiers,
A Schonbrunn, and A B Lee, and P J Brown
January 1990, Preparative biochemistry,
Copied contents to your clipboard!