Identification of regulatory sequences in the gene for 5-aminolevulinate synthase from rat. 1993

G Braidotti, and I A Borthwick, and B K May
Department of Biochemistry, University of Adelaide, South Australia.

The housekeeping enzyme 5-aminolevulinate synthase (ALAS) regulates the supply of heme for respiratory cytochromes. Here we report on the isolation of a genomic clone for the rat ALAS gene. The 5'-flanking region was fused to the chloramphenicol acetyltransferase gene and transient expression analysis revealed the presence of both positive and negative cis-acting sequences. Expression was substantially increased by the inclusion of the first intron located in the 5'-untranslated region. Sequence analysis of the promoter identified two elements at positions -59 and -88 bp with strong similarity to the binding site for nuclear respiratory factor 1 (NRF-1). Gel shift analysis revealed that both NRF-1 elements formed nucleoprotein complexes which could be abolished by an authentic NRF-1 oligomer. Mutagenesis of each NRF-1 motif in the ALAS promoter gave substantially lowered levels of chloramphenicol acetyltransferase expression, whereas mutagenesis of both NRF-1 motifs resulted in the almost complete loss of expression. These results establish that the NRF-1 motifs in the ALAS promoter are critical for promoter activity. NRF-1 binding sites have been identified in the promoters of several nuclear genes encoding mitochondrial proteins concerned with oxidative phosphorylation. The present studies suggest that NRF-1 may co-ordinate the supply of mitochondrial heme with the synthesis of respiratory cytochromes by regulating expression of ALAS. In erythroid cells, NRF-1 may be less important for controlling heme levels since an erythroid ALAS gene is strongly expressed and the promoter for this gene apparently lacks NRF-1 binding sites.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning

Related Publications

G Braidotti, and I A Borthwick, and B K May
March 1999, Molecular biology and evolution,
G Braidotti, and I A Borthwick, and B K May
October 1997, The Biological bulletin,
G Braidotti, and I A Borthwick, and B K May
June 2004, Proceedings of the National Academy of Sciences of the United States of America,
G Braidotti, and I A Borthwick, and B K May
July 2009, Cellular and molecular biology (Noisy-le-Grand, France),
G Braidotti, and I A Borthwick, and B K May
February 1986, Nucleic acids research,
G Braidotti, and I A Borthwick, and B K May
March 1992, Archives of biochemistry and biophysics,
G Braidotti, and I A Borthwick, and B K May
January 1993, Current genetics,
Copied contents to your clipboard!