Mapping of a rat multidrug resistance gene by fluorescence in situ hybridization. 1993

N C Popescu, and J A Silverman, and S S Thorgeirsson
Laboratory of Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

A cDNA clone encoding the rat mdr1b (Pgy2) gene was recently isolated and characterized. This gene has a high degree of sequence identity with other Pgy genes, particularly the mouse Pgy2 gene. By means of in situ fluorescence hybridization, the rat Pgy gene was localized on chromosome 4 band q12. This regional mapping will facilitate the identification of synteny groups on rat, mouse, and human genomes and chromosomal rearrangements during mammalian evolution.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D020168 ATP Binding Cassette Transporter, Subfamily B, Member 1 A 170-kDa transmembrane glycoprotein from the superfamily of ATP-BINDING CASSETTE TRANSPORTERS. It serves as an ATP-dependent efflux pump for a variety of chemicals, including many ANTINEOPLASTIC AGENTS. Overexpression of this glycoprotein is associated with multidrug resistance (see DRUG RESISTANCE, MULTIPLE). ATP-Dependent Translocase ABCB1,MDR1 Protein,MDR1B Protein,Multidrug Resistance Protein 1,P-Glycoprotein,P-Glycoprotein 1,ABCB1 Protein,ATP Binding Cassette Transporter, Sub-Family B, Member 1,ATP-Binding Cassette, Sub-Family B, Member 1,CD243 Antigen,PGY-1 Protein,1, P-Glycoprotein,ABCB1, ATP-Dependent Translocase,ATP Dependent Translocase ABCB1,Antigen, CD243,P Glycoprotein,P Glycoprotein 1,PGY 1 Protein,Protein, MDR1B,Translocase ABCB1, ATP-Dependent

Related Publications

N C Popescu, and J A Silverman, and S S Thorgeirsson
June 1993, Zhonghua yi xue za zhi,
N C Popescu, and J A Silverman, and S S Thorgeirsson
February 1999, Genomics,
N C Popescu, and J A Silverman, and S S Thorgeirsson
June 1991, Current opinion in genetics & development,
N C Popescu, and J A Silverman, and S S Thorgeirsson
January 1991, Environmental and molecular mutagenesis,
N C Popescu, and J A Silverman, and S S Thorgeirsson
May 1991, Trends in genetics : TIG,
N C Popescu, and J A Silverman, and S S Thorgeirsson
January 2001, Methods in molecular biology (Clifton, N.J.),
N C Popescu, and J A Silverman, and S S Thorgeirsson
May 1977, Cell biology international reports,
N C Popescu, and J A Silverman, and S S Thorgeirsson
January 1998, Genomics,
N C Popescu, and J A Silverman, and S S Thorgeirsson
January 2004, Methods in molecular biology (Clifton, N.J.),
N C Popescu, and J A Silverman, and S S Thorgeirsson
January 1990, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!